Skip to main content

Table 3 Equations of each energy for energy conservation law.

From: Effect of Impact Load on Splice Length of Reinforcing Bars

Energy types

Equations

Kinetic energy \(E_{k}\)

\(E_{k} = 0.5m_{h} V_{i}^{2} = m_{h} gh_{d}\)

Potential energy \(E_{p}\)

\(E_{p} = \left\{ {\begin{array}{*{20}l} {\left( {m_{be} + m_{h} } \right)g\delta } & {{\text{for }}\delta < \delta_{y} } \\ {\left( {m_{be} + m_{h} } \right)g\delta + \left( {m_{bp} + m_{h} } \right)g\left( {\delta - \delta_{y} } \right)} & {{\text{for }}\delta < \delta_{y} } \\ \end{array} } \right.\)

Deformation energy \(E_{d}\)

\(E_{d} = \int_{0}^{\delta } {P(\delta )} d\delta\)

Spalling energy \(E_{s}\)

\(E_{s} = \left\{ {\begin{array}{*{20}l} 0 & {{\text{for }}\varepsilon_{c} < \varepsilon_{cu} } \\ {0.2f_{td} bc_{c} k_{s} \left( {L_{p} + 2C_{c} } \right)} & {{\text{for }}\varepsilon_{cs} < \varepsilon_{yd} } \\ \end{array} } \right.\)

\(k_{s} = (300/h)^{0.25} \le 1\)

Energy loss \(E_{l}\)

\(E_{l} = E_{k} - \frac{1}{2}(m_{be} + m_{h} )V_{c}^{2} = \frac{{m_{be} }}{{m_{be} + m_{h} }}E_{k}\)

  1. mh, drop hammer mass; g, acceleration of gravity (= 9.81 m/s); hd, drop height; mbe and mbp, equivalent masses of the RC beam showing elastic and plastic deflections (= 0.52mb+ mj and 0.56mb+ mj) (Biggs 1964); mb, mass of the beam; mj, mass of the steel jig; δy = yield deflection; P, load due to beam moment; δsp, spalling deflection; εc, concrete compressive strain at extreme compression fiber; εcu, ultimate compressive strain of concrete; εcs, compression bar strain; εyd, dynamic yield strain of reinforcing bar; ftd, dynamic concrete tensile strength; b, beam width; cc, concrete cover; ks, size effect factor; Lp, plastic hinge length (= 0.5d + 0.05Ls) (Mattock 1967); d, effective beam depth; Ls, shear span.