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Abstract: This study evaluates the dosages of Class F fly ash, lithium nitrate and their combinations to suppress the excessive
expansion caused by alkali-silica reactivity (ASR). In order to serve the proposed objective, the mortar bar specimens were
prepared from (1) four dosages of Class F fly ash, such as 15, 20, 25 and 30 % as a partial replacement of Portland cement, (2) up
to six dosages of lithium nitrate, such as lithium-to-alkali molar ratios of 0.59, 0.74, 0.89, 1.04, 1.19 and 1.33, and (3) the
combination of lithium salt (lithium-to-alkali molar ratio of 0.74) and two dosages of Class F fly ash (15 and 20 % as a partial
replacement of Portland cement). Percent contribution to ASR-induced expansion due to the fly ash or lithium content, test
duration and their interaction was also evaluated. The results showed that the ASR-induced expansion decreased with an increase
in the admixtures in the mortar bar. However, the specimens made with the both Class F fly ash and lithium salt produced more
effective mitigation approach when compared to those prepared with fly ash or lithium salt alone. The ASR-induced expansions of
fly ash or lithium bearing mortar bars by the proposed models generated a good correlation with those obtained by the experi-

mental procedures.

Keywords: alkali-silica reactivity, mortar bars, ASR-induced expansion, fly ash, lithium nitrate,

combined use of Class F fly ash and lithium salt.

1. Introduction

Alkali silica reactivity (ASR) is one of the major causes of
the deterioration in concrete of highway structures, pave-
ments, dam, bridges and airport. ASR is a chemical reaction
that occurs between the hydroxyl ions of the alkalis, con-
tributed primarily by Portland cement, and reactive silica in
aggregates which form an alkali—silica gel. In the presence of
sufficient moisture, the gel expands and produces stresses
resulting in concrete cracks, spalling and other deterioration
mechanisms (Stanton 1940). The ASR-induced damages can
be prevented through the selection of innocuous aggregates
that are not susceptible to ASR reaction. Utilizing the
appropriate mitigation techniques in suppressing ASR,
however, the reactive aggregates can also be safely used in
the concrete (McCoy and Caldwell 1951; Touma et al. 2001;
Freitag et al. 2003). The most practical and beneficial mean
of suppressing ASR-induced expansion is the use of Class F
fly ash as a partial replacement of Portland cement because
of its economical, technical and ecological benefits (Shehata
and Thomas 2000). Furthermore, fly-ash not only reduces
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the amount of non-durable calcium hydroxide (lime) in
concrete, but in the process it converts lime into calcium-
silicate-hydrate (CSH) over time (Brough et al. 1996). Fly
ash is proven to be somewhat variable in its effectiveness,
principally because its composition depends on the coal
properties from which it is derived (Hudec and Banahene
1993; Stark et al. 1993; Shehata and Thomas 2000; Malvar
and Lenke 2006).

Lithium salts have been used as additives in concrete in
order to inhibit the damages due to alkali-silica reactivity
(Touma et al. 2001; Millard and Kurtis 2008; Islam 2010).
McCoy and Caldwell (1951) were the first researchers to
identify lithium compounds as effective admixtures in con-
trolling ASR. The amount of lithium needed to mitigate ASR
in fresh concrete is a function of sodium oxide equivalent
(NayO,) of Portland cement and the amount of cement used
in concrete. The standard lithium dose, referred as 100 % Li
dose, is the amount of Li admixture that supplies enough Li
ion in the concrete to achieve a lithium-to-alkali molar ratio
of 0.74. The efficacy of lithium in suppressing expansion
due to ASR strongly depends on the nature or reactivity of
the aggregate, the form of lithium, and the amount of alkalis
present in the concrete. The lithium nitrate rate to suppress
ASR expansion of most aggregates is closed to the standard
dosages of 0.74 (McCoy and Caldwell 1951; Durand 2000;
Folliard et al. 2006; Ekolu et al. 2007), although highly
reactive aggregates may require more, and some less reactive
aggregates may need less (Touma et al. 2001; Collins et al.
2004; Islam 2010). An extensive span of lithium-to-alkali
molar ratio is found effective in the previous research
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investigations; such as 0.60-0.90 (Collins et al. 2004);
0.72-0.92 (Feng et al. 2005); 0.925 (Lane 2002); 0.74-0.93
(McKeen et al. 1998), and 0.74—1.04 (Tremblay et al. 2007).

When a large amount of Class F fly ash or lithium salt is
unable to suppress ASR-induced expansion of severe reac-
tive aggregate completely, the combination of lithium and
moderate amounts of fly ash is an option to control alkali—
silica reactivity efficiently (Mckeen et al. 1998; Malvar et al.
2001; Folliard et al. 2003; Johnston et al. 2002; Islam 2010).
This technique requires less amount of lithium thereby
reduces cost, and a smaller amount fly ash, reduces the risk
on the early strength development and produces a low per-
meable concrete. A number of research investigations con-
firmed the positive effect of combining lithium compounds
and fly ash in attaining the identical concrete properties
without sacrificing the damages due to alkali—silica reactiv-
ity (Stark et al. 1993; McKeen et al. 1998; Johnston et al.
2002; Ramyar et al. 2004; Taha and Nounu 2008).

Previous research studies have demonstrated a substantial
work to investigate the role of individual admixture, either
Class F fly ash or lithium salt, in controlling alkali—silica
reactivity, whereas a limited number of studies was con-
ducted for mitigating ASR-induced expansion with the
combined use of Class F fly ash and lithium salt. However,
the previous studies were mostly confined to the test dura-
tion of 14 days, and aggregate types that produced a narrow
range of ASR-induced expansions. Additionally, the existing
investigations were unable to predict empirical equations to
evaluate the optimum dosages of admixture that was suffi-
cient enough to hold back the excessive ASR-induced
expansion caused by alkali-silica reactivity.

2. Research Significance

The purpose of this study is to enhance the previous
research investigations in comparing three mitigation tech-
niques (the individual and combined effect of Class F fly ash
and lithium salt) in inhibiting alkali-silica reactivity of four
reactive aggregate groups with a large variation in ASR-
induced expansion at the immersion ages of 14, 28 and
56 days. The study proposed the models in determining the
optimum dosages of Class F fly and lithium nitrate salt in
suppressing the excessive expansion below the prescribed
limits at the above mentioned three testing periods. Addi-
tionally, the study developed a statistical analysis in selecting

the combined fly ash and lithium dosage to suppress alkali—
silica reactivity from the expansion reading of the mortar
bars containing fly ash or lithium salt alone at their respec-
tive immersion ages.

3. Experimental Program

The raw materials utilized in this study consisted of four
reactive aggregates, ASTM Type V Portland cement, Class F
fly ash, and lithium nitrate salt. Table 1 shows the identifi-
cation, chemical composition, and rock type of the selected
aggregate groups. Based on the summary of findings on
major rock types (mineralogy) susceptible to alkali—silica
reaction in the studies conducted by Bérubé and Fournier
(1993), Islam (2010) and Islam and Akhtar (2013), andesite
(RA-A and RA-C), dacite (RA-B) and basaltic-andesite
(RA-D) were shown to be reactive and the results are pre-
sented in Table 1. The physico-chemical properties of Type
V Portland cement, Class F fly ash and lithium nitrate salt
are shown in Tables 2, 3 and 4, respectively.

The aggregate gradation, as per the requirements of ASTM
C 1260, utilized to cast the test mortar bars is shown in
Table 5. Water-to-SCMs ratio (by weight) of 0.47 and the
graded aggregates to total cementitious materials ratio of
2.15 were used. The absorption and moisture content of the
graded aggregates were included in determination of the
design water-to-SCMs ratio. A constant 7-bar batch size
mixture having the graded crushed aggregates of 2,310 g
and Portland cement of 1,026.7 g was used to fabricate four
control mortar bars of each trial aggregate source. In order to
suppress excessive ASR-induced expansion of control
mortar bars, each aggregate group was treated with Class F
fly ash dosages of 15, 20, 25 and 30 % by weight as a partial
replacement of Portland cement, up to six dosages of lith-
ium-to-alkali molar ratios of 0.59, 0.74, 0.89, 1.04, 1.19, and
1.33, and the combined use of lithium-to-alkali molar ratio
of 0.74 and the fly ash dosages of 15 and 20 % as a partial
replacement of Portland cement. It was noted that the ASTM
C 1260 test was modified by adding lithium into the soak
solution to maintain the same lithium-to-alkali molar ratio in
the mortar bars and the soak solution (Berra et al. 2003;
Folliard et al. 2003; Collins et al. 2004; Li 2005). Table 6
documents the lithium-to-alkali molar ratio and amount of
lithium nitrate in the mortar bars and 1L of NaOH solution.
Amount of Portland cement, fly ash and lithium salt in the

Table 1 The identification, chemical composition, rock type and potential ASR reactivity of the selected aggregates.

Agg. ID Chemical composition (% Rock type | Potential
Si0, AlLO; Fe,05 CaO MgO Na,O K,O LOI ASR

reactivity

RA-A 60.82 15.89 5.37 4.34 2.49 3.57 3.73 2.14 Andesite | Reactive
RA-B 68.00 15.48 2.86 1.14 0.94 4.52 5.40 0.63 Dacite Reactive
RA-C 59.33 17.15 5.83 5.30 2.54 3.76 2.68 1.83 Andesite | Reactive
RA-D 52.50 18.45 8.35 8.36 4.59 3.74 1.22 0.98 Basaltic- | Reactive

andesite

316 | International Journal of Concrete Structures and Materials (Vol.8, No.4, December 2014)



Table 2 Physico-chemical properties of Type V Portland cement.

Chemical composition

Physical properties

Element Percent
Metal oxide Specific surface
SiO, 21.0 Blaine fineness (cmz/g) 3,760
Al,O4 3.6 Soundness
Fe 05 34 Autoclave expansion (%) 0.11
CaO 63.1 Air content (%) 6.7
MgO 4.7 Normal consistency (%) 24.5
SO; 2.6 Time of setting (min)
Alkali oxide Initial set 109
NayOcquy 0.42 Final set 212
Phase analysis Min. compressive strength
C5S 61 1,160 psi (3 days)
C,S 15 2,180 psi (7 days)
C5A 4
C4AF 10
Loss on ignition 1.3
Insoluble residue 0.28
Table 3 Physico-chemical properties of Class F fly ash.
Chemical composition Physical properties
Element Percent
Metal oxide Specific gravity 2.26
SiO, 57.8 Retained on #325 19 %
Al,O3 21.7 Water requirement 93 %
Fe,O4 5.1 Autoclave expansion 0.01
CaO 7.4
SO; 0.5
Total alkali (Na,;O,q) 0.3
Loss on ignition 0.2
Moisture content 0.0

mortar bars containing both Class F fly ash and lithium salt
is shown in Table 7.

The mortar bars were mixed in accordance with the
requirements of ASTM C 305, and molded within a total
mixing time of not more than 2.25 min. After 24 h of moist
curing, the bars were demolded, and initial readings were
taken before immersing in water at 80 °C for 24 h for which
the zero readings were recorded. Afterward, the mortar bars
were submerged in a NaOH solution of 1 N concentration in
an air-tight plastic container held in an oven maintaining the
temperature of 80 °C. Subsequent readings were taken at the
immersion ages of 3, 6, 10, 14 days and thereafter one

reading per week until the immersion age of 98 days was
reached.

4. Results and Discussions

4.1 ASR Evaluation of the Selected Aggregates
The ASR classification of the investigated aggregates was
evaluated based on the expansion limits of mortar bars of
0.10 % at 14 days, suggested by ASTM C 1260, and 0.28 %
at 28 days, and 0.47 % at 56 days, proposed by by Islam
(2010) and Islam and Ghafoori (2013). Additionally, the
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Table 4 Physico-chemical properties of lithium nitrate salt.

Physical properties
Appearance Clear, water white to yellow solution
Odor Odorless
Solubility in water Soluble in any proportion
Oxidizing characteristic Oxidizer

Chemical properties

pH 7-9.5 at 25 °C
Boiling point 110-120 °C
Specific gravity 1.2-1.3 g/cc at 25 °C
Molecular weight 68.95

Chemical compositions

Lithium nitrate 30 %

Water 70 %

Table 5 Crushed aggregate gradation for mortar bar specimens.

Sieve size % Mass
Passing Retained on
4.75 mm (no. 4) 2.36 mm (no. 8) 10
2.36 mm (no. 8) 1.18 mm (no. 16) 25
1.18 mm (no. 16) 600 um (no. 30) 25
600 pm (no. 30) 300 pm (no. 50) 25
300 pm (no. 50) 150 pm (no. 100) 15

Table 6 Lithium-to-alkali molar ratio and amount of lithium nitrate in the mortar bars and 1 L of NaOH solution.

Iﬁ LiNOj in mortars (g) 1.0 L of 1 N NaOH solution
No K Water® (g) LiNO; (g) NaOH (g)
0.59 37.78 0.295 952.50 67.93 40
0.74 47.23 0.370 940.56 84.92
0.89 56.67 0.445 928.70 101.90
1.04 66.12 0.520 916.80 118.90
1.18 75.56 0.590 904.90 135.86
1.33 85.01 0.665 893.00 152.90

? Based on 7-bar size mixture.
® Distilled water was added to prepare NaOH solution.

Table 7 Amount of Portland cement, fly ash and lithium salt in the mortar bars containing both Class F fly ash and lithium salt.

Design Criteria Portland cement (g) Fly ash (g) Lithium (g)
15 % FA + 100 % Li 872.7 154.0 47.23
20 % FA + 100 % Li 821.3 205.4 47.23

# Based on 7-bar size mixture.
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Fig. 1 Expansion progression of mortar bars made with various dosages of Class F fly ash and a RA-A, b RA-B, ¢ RA-C, and

d RA-D aggregates.
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Fig. 2 Percent contribution to mortar expansion due to Class
F fly ash, immersion age and their interaction.

extended failure criteria of 0.33 % at 28 days and 0.48 % at
56 days, proposed by Hooton (1995), and Hooton and
Rogers (1993), were also applied to assess the aggregate’s

susceptibility due to alkali—silica reactivity. All aggregates
tested in this study were considered as reactive based on the
above mentioned 14-, 28- and 56-day failure criteria. The
mineralogy of aggregates also produced the similar ASR
classification with that obtained by the expansion limits at
the three test durations. Since the alkali-silica reaction is a
complex meachanism that depends on a number of factors, it
was highly recommended to use the conservative expansion
limits in evaluating the reactivity of an aggregate. As such,
in this study, the 28- and 56-day extended failure criteria of
0.28 and 0.47 %, respectively, were utilized.

4.2 Controlling ASR-Induced Expansion Using
Class F Fly Ash

Figure 1 shows that expansion progression of mortar bars
made with various dosages of Class F fly ash and each
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aggregate group. The ASR-induced expansion of each
aggregate group as related to Class F fly ash and immersion
age is shown in Fig. 1. As can be seen, the expansion of the
test mortar bars increased with an increase in test duration,
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Fig. 3 Comparison of experimental and analytical ASR-
induced expansion.

and decreased with increasing fly ash content. The rate of
expansion was extensive at the early immersion age for the
control specimens, and it reduced with replacing Portland
cement by weight with Class F fly ash. The results revealed
the optimistic influence of the selected dosages of Class F fly
ash in reducing the adverse effect of reactive aggregates.

4.2.1 Percent Contribution to Mortar Expansion
due to Class F Fly Ash, Inmersion Age and Their
Interaction

The experimental mortar expansion of each aggregate
group consisted of two factors of Class F fly ash and
immersion age with three levels at each setting: three
immersion ages of 14, 28 and 56 days, and three rates of
Class F fly ash of 0, 15 and 30 %. A full factorial analysis
was performed to evaluate the effect of each factor (fly ash
and immersion age) and their interaction on the response
variable (which was ASR-induced expansion). The results
are provided in Fig. 2. The plot demonstrates that, for all

Table 8 Optimum experimental and analytical Class F fly ash dosage at various immersion ages.

Aggregate 1D Immersion age Control expansion | Expansion of treated | Experimental Class F | Analytical Class F fly
(days) (%) bars below failure fly ash (%) ash dosage (%)
limit (%)
RA-A 14 0.890 0.099 25 37.9
28 1.185 0.236 25 27.6
56 1.323 0.434 25 22.7
RA-B 14 0.465 0.081 20 36.8
28 0.620 0.261 15 19.3
56 0.800 0.409 15 17.9
RA-C 14 1.098 0.081 25 44.0
28 1.610 0.251 25 313
56 2.050 0.389 30 33.0
RA-D 14 0.940 0.084 25 41.5
28 1.472 0.244 25 30.2
56 1.828 0.352 30 323
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Fig. 4 ASR-induced expansion of the mortar bars made with RA-D aggregate and various lithium dosages.
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Fig. 5 Percent contribution to mortar expansion due to
lithium salt, immersion age, and their interaction.

trial aggregates, the percent contribution to ASR-induced
expansion (PCE) due to immersion age, Class F fly ash, and
the combined influence of immersion age and fly ash was
shown to be nearly consistent (approximately 20 % due to
immersion age, 78 % due to Class F fly ash, and 2 % due
their combined effect). The results demonstrated that
aggregate mineralogy had less influence on the percent
contribution to ASR-induced expansion of mortar bars
treated with when Class F fly ash.

4.2.2 Empirical Modelling to Predict the Optimum
Analytical Class F Fly Ash Dosage

ASR-induced expansion of fly-ash containing mortar bars
(Expry) as related to control expansion (Expcg), immersion
age (¢) and Class F fly ash dosage (F) was evaluated, and the
results were expressed in Eq. (1). A very good correlation,
with an R? value of 0.90, existed between the experiment
and predicted expansion of fly-ash mortar bars as shown in
Fig. 3. The The model was appropriate for a wide range of
Class F fly ash (0-30), ASR-induced expansion, and
immersion age (14-98 days). For the proposed model, the

absolute #-ratio and Prob(¢) for all regression coefficients
were found to be highly significant. Additionally, the F-ratio
of the model was found to be very high that shows the model
parameter’s significance. Finally, percent Class F fly ash
dosage can be expressed in Eq. (2) by taking natural loga-
rithm in both sides of Eq. (1).

The optimum analytical Class F fly ash dosage required to
hold the control expansion below the prescribed failure
limits of mortar bars at the ages of 14, 28 and 56 days was
evaluated. The results are shown in Table 8. As can be seen,
there is a good agreement between the optimum experi-
mental fly ash content and the analytical fly ash dosage at the
ages of 28 and 56 days. However, the results obtained at the
early age of 14 days were inconsistent and were to be more
conservatives. The main reasons can be stated as follows:

e ASR-induced expansion of fly-ash containing mortar
bars made with trial aggregate groups at early age
(<14 days) varied abruptly,

e ASR-induced expansion below 14 days was not critical
in evaluating alkali-silica reactivity, and

e cxpansion rate below the early immersion age differed
over a wide range, and did not follow any distinct
pattern.

Expp, = exp(—0.940 + 0.613 Exp .z + 0.00928¢
— 0.0540F) (1)

1
F = 5553 [70:940 +0.613Expcy +0.009281 — In(Expy)]
(2)

where Expry and Expcp are the percent linear expansions of
fly ash treated mortar bars and control mortar bars, respec-
tively; ¢ is immersion age in days, F is Class F fly ash

Table 9 Optimum experimental and analytical lithium dosage of each aggregate group at various immersion ages.

Aggregate 1D Immersion age Control expansion | Expansion of treated | Experimental lithium | Analytical lithium
(days) (%) bars below failure dosage dosage
limit* (%)
RA-A 14 0.890 0.074 0.89 1.03
28 1.185 0.248 0.89 0.98
56 1.323 0.464 1.04 0.92
RA-B 14 0.465 0.075 0.74 0.90
28 0.620 0.216 0.59 0.85
56 0.800 0.447 0.59 0.78
RA-C 14 1.098 0.073 0.89 1.10
28 1.610 0.265 0.89 1.09
56 2.050 0.453 1.04 1.17
RA-D 14 0.940 0.059 1.04 1.07
28 1.472 0.254 1.04 1.07
56 1.828 0.411 1.19 1.16

 Less than 0.10 % at 14 days, 0.28 % at 28 days, and 0.47 % at 56 days.
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Fig. 6 RIE of mortar bars prepared with two dosages of Class F fly (15 and 20 %) and lithium-to-alkali molar ratio of 0.74 (100 %
Li) at various immersion ages. a RA-A aggregate. b RA-B aggregate. ¢ RA-C aggregate. d RA-D aggregate.

dosages (in percent) as a partial replacement of Portland
cement by weight.

4.3 Controlling ASR-Induced Expansion Using
Lithium Salt

The results of the study clearly revealed that the selected
lithium nitrate dosages reduced the adverse effect of alkali—
silica reactivity for the four reactive aggregates. A typical
ASR expansion as a function of the immersion age and
lithium-to-alkali molar ratio is shown in Fig. 4. As can be
seen, the expansion of control mortar bars expanded rapidly
at the early age of immersion, and the expansion rate
decreased with an increase in the immersion age. In the case
of lithium-bearing mortar bars, the expansion rate was fairly
small throughout the test duration. Additionally, the mortar
bars containing lithium salt showed little tendency to expand
after the immersion age of 2 months. The results of the study
clearly revealed that the selected lithium nitrate dosages
reduced the harmful effect of alkali—silica reactivity for the
selected reactive aggregate groups. The expansion rate of
lithium-bearing mortar bars was fairly small throughout the
test duration. Additionally, those specimens showed little
tendency to expand after the immersion age of 2 months.
The expansion behavior of the remaining three aggregates
groups over the immersion age also followed the similar
pattern to that of the AR-D aggregate.

4.3.1 Percent Contribution to Mortar Expansion
due to Lithium Salt, Immersion Age and Their
Interaction

A full-factorial analysis was conducted to evaluate the
percent contribution to ASR-induced expansion (PCE) due
to lithium salt, immersion age, and their interaction. The

results are presented in Fig. 5. The plot demonstrates that
percent contribution to ASR-induced expansion for all trial
aggregates due to immersion age varied from 18.86 to
30.06 % with an average of 25.5 %, and that of lithium salt
differed from 68.70 to 78.32 % with an average of 73.32 %,
respectively, and the interaction of immersion age and lith-
ium salt contributed about 1.3 % to ASR-induced expansion.
The PCE due to immersion age and lithium salt for the
investigated aggregate groups was more diverged as com-
pared to that obtained due to immersion age and fly ash
(Fig. 2). As such, suppressing alkali—silica reactivity using
the lithium salt depended mainly on aggregate mineralogy.

4.3.2 Empirical Modeling to Predict the Optimum
Analytical Lithium Dosage

Equation (3) represents the ASR-induced expansion of lith-
ium-containing mortar bars, which is mainly depended on three
independent variables (factors) such as control expansion,
lithium salt, and immersion age. The model was appropriate for
a wide range of lithium-to-alkali molar ratio (0—1.19), ASR-
induced expansion, and immersion age (14-98 days). For the
proposed model, the statistical analysis for all regression coef-
ficients were tested and found to be highly significant. Addi-
tionally, the F-ratio of the model was found to be very high that
shows the model parameter’s significance. The empirical model
to evaluate the optimum lithium content for all trial aggregate
groups is expressed in Eq. (4), which is derived from Eq. (3).

Expy; = 0.5535 +0.2285 Expcy; +0.005047 — 0.712Li  (3)

1
Li=
"7 0.712(0.5535 + 0.2285 Expey + 0.00504 ¢ — Exp,,)

4)
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where Expcr and Exp;; are the percent linear expansion of
untreated mortar bars and that of treated specimens,
respectively; ¢ is immersion age in days, Li is lithium-to-
alkali molar ratio.

The proposed empirical model predicted the optimum lithium
dosage of each reactive aggregate that was sufficient enough to
suppress the control expansion (Exp..,) below the prescribed
failure limits at the immersion ages of 14, 28 and 56 days. The
results are shown in Table 9. The proposed empirical model
generated the minimum lithium content for each trial aggregate
at three immersion ages was in a good agreement with the result
obtained by the experimental procedures.

4.4 Controlling ASR-Induced Expansion Using
the Combination of Class F Fly Ash and Lithium
Salt

The effectiveness of the combined use of Class F fly ash
and lithium salt was also expressed in terms of the Reduction
in Expansion (RIE) of the untreated mortar bars (having no
fly ash or lithium content). Figure 6 shows the RIE of mortar
bars prepared with two dosages of Class F fly (15 and 20 %)
and lithium-to-alkali molar ratio of 0.74 (100 % Li) at var-
ious immersion ages. As can be shown, the 14-day RIE of
the treated mortar bars made with the selected aggregates
varied from 93.9 to 95.2 % with an average of 94.7 % for
15 % FA + 100 % Li, and 95.6-96.7 % with an average of
96.1 % for 20 % FA + 100 % Li. The RIE decreased with
an increase in test duration. At the extended immersion age
of 98 days, the expansion values differed from 58.50 to
75.03 % with an average of 64.88 % for the 15 %

FA 4 100 % Li, and 71.69-80.22 % with an average of
74.73 % for the 20 % FA + 100 % Li. Overall, the results
illustrated that the difference in the 14-day RIE among the
trial aggregates was fairly insignificant as compared to that
at the immersion age of 98 days.

4.4.1 Empirical Modeling to Predict ASR-Induced
Expansion of Mortar Bars Prepared with Both Class
F Fly Ash and Lithium Salt

A correlation was observed between the expansion of
mortar bars made with combined fly ash and lithium dosages
with the expansion of mortar bars having the dosage of
admixture, that of untreated specimen, and immersion age.
Equations (5) and (6) show the empirical models in evalu-
ating the expansion of mortars made with 15 % Class F fly
ash and lithium-to-alkali molar ratio of 0.74 (100 % Li
dosage), and that prepared with 20 % Class F fly ash and
lithium-to-alkali molar ratio of 0.74, respectively. The R?
values of the proposed models, higher than 98 %, indicated a
good fit between the 14-, 28-, and 56-day expansion of the
mortar bars made with Class F fly ash, lithium nitrate, and
that containing both fly ash and lithium.

Exppis.r074 = exp(—4.507 + 1.108Exp + 0.0172 ¢
— 1.470Expg s + 2.400 Exp, ;)
()

Exprogir0.74 = exp(—2.560—0.848 Expp — 0.0056 ¢
+ 2.281 Exppyy + 2.227 Exp;;)

(6)

Table 10 The optimum experimental and analytical lithium-to-alkali molar ratio for each reactive aggregate at various immersion

ages.
Agg. ID  |(Immersion age Experimental expansion (%) due to Analytical expansion (%) due
(days) to
15 % FA 20 % FA 100 % Li 15 % 20 % 15 % 20 %
FA + 100 % | FA + 100 % | FA + 100 % | FA + 100 %
Li Li Li Li
RA-A 14 0.251 0.146 0.166 0.042 0.030 0.039 0.068
28 0.434 0.300 0.401 0.118 0.084 0.092 0.117
56 0.674 0.526 0.720 0.292 0.220 0.262 0.304
RA-B 14 0.134 0.081 0.076 0.025 0.018 0.023 0.069
28 0.261 0.184 0.175 0.055 0.041 0.037 0.088
56 0.409 0.322 0.352 0.128 0.104 0.098 0.143
RA-C 14 0.251 0.152 0.179 0.052 0.042 0.050 0.060
28 0.532 0.363 0.485 0.146 0.111 0.156 0.114
56 1.116 0.721 0.877 0.386 0.296 0.446 0.364
RA-D 14 0.233 0.144 0.286 0.057 0.042 0.056 0.085
28 0.488 0.349 0.660 0.175 0.125 0.217 0.183
56 0.854 0.718 0.852 0.447 0.321 0.482 0.412

 Less than 0.10 % at 14 days, 0.28 % at 28 days, and 0.47 % at 56 days.
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Table 11 Effective mitigation techniques to suppress alkali-silica reactivity.

Agg. ID 14-Day expansion limit of 0.10 % 28-Day expansion limit of 0.28 % 56-Day expansion limit of 0.47 %
(ASTM C 1260) (Islam 2010) (Islam 2010)
FA (%) Li FA + Li FA (%) Li FA + Li FA Li FA + Li
RA-A 25 0.89 15 4+ 0.74 25 0.89 15 + 0.74 25 1.04 15 +0.74
RA-B 20 0.74 15 4+ 0.74 15 0.59 15 + 0.74 15 0.59 15 +0.74
RA-C 25 1.04 15 4+ 0.74 25 1.04 15 4+ 0.74 30 1.19 15 4+ 0.74
RA-D 25 0.89 15 4+ 0.74 25 0.89 15 4+ 0.74 30 1.04 15 4+ 0.74

FA Class F fly ash, Li lithium-to-alkali molar ratio.

where Exprisir0.74 and Expro.r0.74 are the percent ASR-
induced expansions of specimens due to the combined
effects of 15 % fly ash and 100 % Li and those prepared
with 20 % Class F fly ash and 100 % Li, respectively; Expcr
is percent control expansion; Exprs and Expg, are the
percent linear expansions due to 15 and 20 % Class F fly
ash, respectively; Exp;; is the percent expansion due to
lithium-to-alkali molar ratio of 0.74; ¢ is immersion age in
days.

The analytical ASR-induced expansion of the mortar bars
containing both fly ash and lithium salt at the immersion
ages of 14, 28 and 56 days was evaluated by using Egs. (5)
and (6), and the outcomes are shown in Table 10. The test
results were compared with the experimental expansion of
the mortar bars containing both fly ash and lithium nitrate. A
linear correlation with R* values of 0.986 and 0.982 was
observed between the analytical and experimental results for
the mortar bars containing 15 % FA 4 100 % Li and 20 %
FA + 100 % Li, respectively.

4.5 Comparison of Various ASR Mitigation
Techniques

Table 11 documents the levels of alkali—silica reactivity of
the selected aggregates based on the suggested expansion
criteria of ASTM C 1260 at 14, 28 and 56 days. As can be
seen, various techniques in controlling the ASR-induced
expansion at three immersion ages are effective for different
aggregates. The combined use of fly ash and lithium showed
very effective in suppressing the excessive expansion of the
trial reactive aggregates compared to the individual effect of
fly ash and lithium at the immersion age of 56 days. How-
ever, the study demonstrated that a combination of lithium
nitrate at the lithium-to-alkali molar ratio of 0.74 and a
minimum of 15 % Class F fly ash by weight of Portland
cement inhibited ASR-induced expansion of all reactive
aggregates based on the suggested expansion limits at the
ages of 14, 28 and 56 days. The results showed an agree-
ment on the findings recommended by McKeen et al. (1998),
Johnston et al. (2002) and Ramyar et al. (2004). The study
suggested that blending 20 % Class F fly ash as a partial
replacement of Portland cement in conjunction with a
Li:(Na + K) molar ratio of 0.74 would be more effective in
improving ASR mitigation of the selected aggregate quarries
at three different ages.

5. Conclusions

The following conclusions can be drawn based on the
results of this study:

e C(Class F fly ash, lithium salt, and their combination
suppressed the excessive expansion of trial aggregate
groups caused by alkali-silica reactivity. It was shown
that the progression in ASR-induced expansion had the
highest for the control mortar bars, followed by the
specimens treated with lithium salt, Class F fly ash and
finally, the combination of lithium salt and Class F fly
ash.

e Most cases, the required experimental Class F fly ash and
lithium dosages to suppress excessive ASR-induced
expansion below 0.10 % at 14 days was less than that
required to reduce the expansion below 0.28 % at
28 days, and 0.47 % at 56 days. It was recommended
to use the minimum amount of Class F fly ash and
lithium nitrate to arrest the ASR-related damages based
on the 14-, 28- and 56-day expansion criteria.

e The results revealed that lithium nitrate was found to be
more effective for some extremely reactive aggregates,
but comparatively less effective for less reactive aggre-
gates. Additionally, lithium-bearing specimens show no
tendency to expand after 2—3 months of immersion.

e The reduction in mortar expansion decreased rapidly
with an increase in immersion age for the mortar bars
treated with the combination of fly ash and lithium salt
than that those prepared with fly ash or lithium salt alone.
The mitigation technique of combined use of Class F fly
ash and lithium salt was shown to be more effective in
inhibiting the excessive expansions of highly reactive
aggregates. The combined use of standard lithium dose
(lithium-to-alkali molar ratio of 0.74) and a moderate
amount (15 %) of Class F fly ash as a partial replacement
of Portland cement by weight, arrested the ASR-related
damages for the investigated four reactive aggregates at
three immersion ages.

e A good agreement existed between the experimental
admixture dosage and analytical admixture dosage at the
immersion ages of 14, 28 and 56 days. The proposed
analytical method may be used in selecting both
optimum fly ash and lithium that is capable of limiting
the ASR expansion of reactive aggregate below the three
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suggested failure criteria for the above-mentioned
immersion ages.

e The study also suggested that different aggregates may
require different mitigation techniques to limit alkali—
silica reactions. The final selection of an effective
mitigation technique depends on its effect on early-age
and late-age ASR-induced expansions, and the potential
economical benefits.
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