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Abstract: Estimation of the residual strength of corroded reinforced concrete beams has been studied from experimental and

theoretical perspectives. The former is arduous as it involves casting beams of various sizes, which are then subjected to various

degrees of corrosion damage. The latter are static; hence cannot be generalized as new coefficients need to be re-generated for new

cases. This calls for dynamic models that are adaptive to new cases and offer efficient generalization capability. Computational

intelligence techniques have been applied in Construction Engineering modeling problems. However, these techniques have not

been adequately applied to the problem addressed in this paper. This study extends the empirical model proposed by Azad et al.

(Mag Concr Res 62(6):405–414, 2010), which considered all the adverse effects of corrosion on steel. We proposed four artificial

neural networks (ANN) models to predict the residual flexural strength of corroded RC beams using the same data from Azad et al.

(2010). We employed two modes of prediction: through the correction factor (Cf) and through the residual strength (Mres). For each

mode, we studied the effect of fixed and random data stratification on the performance of the models. The results of the ANN

models were found to be in good agreement with experimental values. When compared with the results of Azad et al. (2010), the

ANN model with randomized data stratification gave a Cf-based prediction with up to 49 % improvement in correlation coefficient

and 92 % error reduction. This confirms the reliability of ANN over the empirical models.

Keywords: corrosion, reinforced concrete beam, flexural strength, artificial neural networks.

1. Introduction

Corrosion of reinforcement steel has been proved to be a
major cause of deterioration of reinforced concrete (RC)
structures, resulting in the reduction of the service life of
concrete structures. A substantial amount of research related
to reinforcement corrosion has been carried out in the past,
addressing various issues related to the corrosion process, its
initiation and damaging effects. Assessment of the flexural
strength of corrosion-damaged RC members has been stud-
ied (Azad et al. 2010; Cabrera 1996; Huang and Yang 1997;
Rodriguez et al. 1997; Uomoto and Misra 1988). A number
of studies have also been conducted on the prediction of
residual flexural strength of corroding concrete beams (Azad
et al. 2007; Mangat and Elgarf 1999; Nokhasteh and Eyre

1992; Ravindrarajah and Ong 1987; Tachibana et al. 1990;
Wang and Liu 2008; Jin and Zhao 2001). Some of these
studies had been conducted in the laboratory. They involve
the casting of concrete beam specimens sometimes in large
scale, in the order of meters in dimension (Ou et al. 2012),
and sometimes in small scale, in the order of millimeters
(Azad et al. 2007; Mangat and Elgarf 1999; Nokhasteh and
Eyre 1992; Revathy et al. 2009; Tachibana et al. 1990; Wang
and Liu 2008; Jin and Zhao 2001). The specimens are then
subjected to various degrees of corrosion damage after
which the samples are tested for their bending or flexural
performances. These procedures take a lot of time as some of
the specimens need to be left for several days to attain their
required degree of corrosion. They also require the use of
expensive and specialized laboratory equipment, exorbitant
man-hours and concerted effort. An average experiment can
take up to 6 months to complete. Though, experiments are
the best sources of real data but the associated costs often
make them prohibitive.
In order to reduce the completion time and avoid the cost

associated with such studies without compromising on ac-
curacy, some attempts have been made on the use of nu-
merical modeling methods (Azad et al. 2007, 2010; Cabrera
1996; Coronelli and Gambarova 2004; Ou et al. 2012).
These methods are however static and cannot be generalized
well on datasets outside those for which they were designed.
Most of them do not consider the non-linearity of the at-
tributes of the natural phenomena involved in the corrosion
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process. Since corrosion is a natural process, it is expected
that its attributes be non-linearly related to the corrosion
property being studied. Hence, modeling the process with
linear relations is inadequate. To make such models more
generalized, they need to be recalibrated with new sets of
data. Doing this will result in re-generating new sets of co-
efficients to evolve a new model, which requires consider-
able time and effort.
With the limitations in the experimental and theoretical

methods, the quest for cost-effective, easy to use and
adaptive models that offer scalability and efficient general-
ization capability to new cases continues. With the huge
amount of data generated from various experiments over the
years, robust data mining techniques that are based on
computational intelligence (CI) and machine learning para-
digms are hypothesized to be capable of overcoming the
limitations of the conventional methods. The prediction and
generalization capability of artificial neural networks (ANN)
had been investigated in this paper. With the capability of
ANN to handle the non-linearity in natural phenomena such
as corrosion, coupled with its capability to adaptively learn
from hidden patterns in experimental data, we presented two
optimized models of ANN to efficiently predict the flexural
strength of corrosion-damaged RC beams.
Themotivations for choosing the proposedANNmodels are:

• ANN is the most commonly used of the CI techniques in
various application areas (Abdalla et al. 2007; VanLuch-
ene and Sun 1990; Waszczyszyn and Ziemiański 2001;
Wu et al. 1992).

• Though ANN has been applied in modeling other civil
engineering problems, they have not been adequately
applied to the problem of estimating the residual flexural
strength of corrosion-damaged RC beams, which is the
focus of this paper.

• ANN is easy to use and understand by researchers
outside the Computer Science field.

• Following the principle of Occam’s Razor (Jefferys and
Berger 1991), starting an investigation with a simple
model like ANN is preferred to using more complex and
state-of-the-art techniques.

• Since the performance of a model is determined by the
nature of the problem (represented by data), there is no
guarantee that using a more sophisticated algorithm will
perform better. This agrees with the No Free Lunch
theorem (Wolpert and Macready 1997).

Further to ensuring simplicity in design and implementa-
tion, proposing optimization- and feature selection-based
hybrid models is considered undesirable. Optimization al-
gorithms such as Particle Swam, Genetic Algorithm, Bee
Colony, Ant Colony, etc. are based on heuristic and ex-
haustive search paradigms (Bies et al. 2006). Due to this,
they take much time to converge, require considerable
memory resources and are complex. Also, since this study
does not involve high-dimensional dataset, proposing feature
selection-based hybrid models will be of no use.
The rest of this paper is organized as follows: Sect. 2 pre-

sents a literature survey on the proposed study. Section 3

gives a brief background on the proposed technique as well as
the previously published empirical equation. Section 4 de-
scribes the datasets used for this study and the details of the
proposed methodology. Results are presented and discussed
in Sect. 5 while conclusions, highlighting the contributions of
this study as well as its limitations, are presented in Sect. 6.

2. Literature Survey

The estimation of the flexural strength of corroded RC
beams has been a focus of keen research for almost three
decades (Cabrera 1996; Huang andYang 1997; Ravindrarajah
and Ong 1987; Rodriguez et al. 1997; Uomoto and Misra
1988). That shows the importance of this phenomenon in the
construction engineering field. One of the earliest studies on
this subject include the experiment carried out by Ravin-
drarajah and Ong (1987) to study the effect of corrosion on
steel bars in mortar with the use of an accelerated corrosion
technique. This was followed by Uomoto and Misra (1988)
who studied the behavior of concrete beams and the changes
in columns as corrosion of reinforcing bars increases. They
presented an idea on when to repair the structures in marine
environment. Another interesting research was carried out by
Rodriguez et al. (1997) who induced corrosion to some RC
beams. The data extracted from the experiment was used to
develop some numerical models for the assessment of con-
crete structures affected by steel corrosion and other dete-
rioration mechanisms. A similar work was carried out by
Huang and Yang (1997) who tested thirty-two concrete beams
in order to assess their structural behavior due to corrosion.
The afore-mentioned studies were based on experimental
methods whose limitations have been highlighted in Sect. 1.
Numerical methods of estimating the effect of corrosion

have been applied since the experimental studies started.
One of the earliest of such studies is that of Cabrera (1996)
who used laboratory data to derive numerical models to
relate the rate of corrosion to cracking and loss of bond
strength. Rodriguez et al. (1997) used one of the Euro Code
2 conventional models to predict the ultimate bending mo-
ment and shear force. Later, Coronelli and Gambarova
(2004) used a finite-element-based numerical procedure to
estimate the bond deterioration index of concrete beams
under corrosive conditions. Azad et al. (2007) and Al-Gohi
(2008) employed a regression analysis method on the data
obtained from experiments to predict the residual flexural
strength of RC beams. They formulated a correction factor
that can be used to calculate the flexural strength of a cor-
roded beam using the reduced area of corroded bars. They
later improved this correction factor in Azad et al. (2010)
using new sets of data. When compared with Azad et al.
(2007), they concluded that the improved model yielded
values that are in good agreement with the test data, lending
confidence to the proposed method to serve as a reliable
analytical tool to predict the flexural capacity of a corroded
concrete beam. The most recent study is the empirical
equation proposed by Ou et al. (2012) who concluded that
the results closely corresponds to experimental values.
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It is well known that all these regression analysis and
analytical modeling techniques, though performing well in
their respective applications, do not handle the non-linearity
between independent variables and their target values. They
are rather based on the assumption that the dependent vari-
ables are linearly related to one or more of the independent
variables. They do not consider the hidden and the non-
linear relationships that exist in such natural phenomena. CI
techniques, on the other hand, have the capability to extract
hidden patterns and ‘‘learn’’ from historical knowledge to
make predictions about unknown future cases (Eskandari
et al. 2004). Applications of CI techniques have demon-
strated superior performance over regression analysis and
analytical modeling techniques. ANN has featured in a
number of engineering problems with excellent performance
(Castillo et al. 2001; Mohaghegh 1995; Rafiq et al. 2001;
Tsai and Hsu 2002).
A set of pragmatic guidelines for designing ANN for

engineering applications were proposed by Rafiq et al.
(2001). Hsu and Chung (2002) evolved a model of damage
diagnosing for RC structures using the ANN technique. The
network learning procedure showed that the rate and the
accuracy of the convergence is acceptable while the test
results showed that the technique is efficient for the problem.
ANN has been used to predict the shear strength (Cabrera
1996), deformation capacity (Inel 2007) and shear resistance
(Abdalla et al. 2007) of various shapes of RC beams. The
prediction of residual flexural strength has not been ad-
dressed with CI techniques. We intend to fill this research
gap by proposing ANN models for this problem.
The success of the few attempts at utilizing the learning

and predictive power of ANN in construction engineering as
discussed above is the major motivation for this study. The
main objective of this study is to use the ANN technique in
the prediction of residual flexural strength of corroded RC
beams. This technique utilizes the capability of the super-
vised machine learning concept to model the complex non-
linear relationship between the properties of RC beams and
their independent variables.
The next section gives a brief theoretical background of

ANN and the necessary details of the empirical model pro-
posed by Azad et al. (2010).

3. Theoretical Background

3.1 Artificial Neural Networks
Artificial Neural Networks (ANN) was inspired by the

functioning of the human brain. It is an emulation of the
biological nervous system that is made up of several layers of
neurons (nodes) interconnected by links. Each node is as-
signed a weight. ANN can be thought of as a ‘‘computational
system’’ that accepts inputs and produces outputs (Baughman
1995). Figure 1 shows how the human nervous system is
mapped to evolve a typical ANN structure. The dendrites and
synapses that serve as receptacles of excitatory signals in
Fig. 1a is equivalent to the input layers of ANN in Fig. 1b
from where input variables are admitted into the system. As

the nucleus gathers all input signals and prepares them for
processing (as shown in Fig. 1a), the input signals in ANN are
multiplied by the weights and biases, and aggregated in the
summation layer (in Fig. 1b) where they are ‘‘excited’’ with an
activation function. Finally, while the gathered signals are
sent through the axon (Fig. 1a) to the brain for processing, the
optimized results produced by ANN are sent to the output
layer for interpretation and decision-making processes.
The individual inputs: x1; x2; . . .; xk are multiplied by

weights and the weighted values are fed to the summing
junction (

P
). Their sum is simply wx, which is the dot

product of the matrix w and the vector x. The neuron has a
bias li, which is summed up with the weighted inputs to
form the predicted output yi subject to the transfer function f.
The input vector enters the network through the weight
matrix w expressed as:

w ¼
w11;w12; . . .;w1k

w21;w22; . . .;w2k

wi1;wi2; . . .;wik

2

6
4

3

7
5 ð1Þ

where i is the number of neurons and k is the number of
inputs.
The ANN processes are mathematically represented and

generalized as:

yi ¼ f
X

k

wikxk þ li

 !

ð2Þ

where xk are inputs to the neuron, wik are weights attached to
the inputs to the neuron, li is a threshold, offset or bias, f (�)
is a transfer function and yi is the output of the neuron. The
transfer function f (�) can be any of: linear, non-linear, piece-
wise linear, sigmoidal, tangent hyperbolic and polynomial
functions.
As each input xk is applied to the network, the network

output is compared to the target. The error is calculated as
the difference between the target output and the network
output. The goal is to minimize the average of the sum of
these errors. The least mean square (LMS) algorithm adjusts
the weights and biases of the linear network so as to mini-
mize this mean square error:

mse ¼ 1

Q

XQ

k¼1

eðkÞ2 ¼ 1

Q

XQ

k¼1
tðkÞ � aðkÞð Þ2 ð3Þ

where Q is the number of data samples, e is the error cri-
terion, t is the original target values and a is the model
predicted values.
The mean square error performance index for the linear

network is a quadratic function. Thus, the performance index
will either have one global minimum, a weak minimum, or
no minimum, depending on the characteristics of the input
vectors. Specifically, the characteristics of the input vectors
determine whether or not a unique solution exists.
The number of neurons in the input layer corresponds to

the number of input variables fed into the neural network.
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The number of hidden layer(s) and the corresponding
number of neurons in each determine the ‘‘power’’ of the
network. This is determined through the training process.
The complexity of a problem determines the ‘‘power’’ it
requires. Using more power than necessary will lead to the
model being overfitted. In this case, the models perform well
on the training data but poorly on the validation data (Hastie
et al. 2009). On the other hand, using less power than re-
quired will lead to underfitting (Hastie et al. 2009). In this
case, the model performs poorly on both training and
validation datasets.
In order to concentrate more on the subject of this study,

readers are referred to (Petrus et al. 1995) for more details of
the architecture, structure and mathematical bases of ANN.
This technique has caught the interest of most researchers
and has today become an essential part of the technology
industry, providing a good ground for solving many of the
most difficult prediction problems in various areas of engi-
neering applications (Baughman 1995; Guler 2005; Inan
et al. 2006; Li and Jiao 2002; Moghadassi et al. 2009;
Mohaghegh 1995; Nascimento et al. 2000; Phung and
Bouzerdoum 2007; Übeyli 2009). ANN has also gained vast
popularity in solving various Civil Engineering problems
(Baughman 1995; Beale and Demuth 2013; Chen et al.
1995; Flood and Kartam 1994; Hasancebi and Dumlupınar
2013; Kang and Yoon 1994; Kirkegaard and Rytter 1994;
Neaupane and Adhikari 2006; Pandey and Barai 1995; Rafiq
et al. 2001).

3.2 The Previously Published Empirical Model
Azad et al. (2010) proposed the following two-step pro-

cedure to predict the residual flexural strength of corroded
beams for which the cross-sectional details, material
strengths, corrosion activity index IcorrT , and diameter of
rebar, D were known. The procedure used is:

• First, the moment capacity Mth;c

� �
was calculated using

reduced cross-sectional area of tensile reinforcement, A0
s,

in the conventional manner.
• The computed value of Mth;c was then multiplied by a

correction factor (Cf) to obtain the predicted residual
flexural strength of the beam Mresð Þ using this relation:

Mres ¼ Cf Mth;c ð4Þ

where Cf was assumed to represent the combined effect of
bond loss and factors pertaining to loss of flexural strength
other than the reduction of the metal area.
• The value of Cf was taken as a function of the two

important variables, namely IcorrT and D. Finally, using
regression analysis of the data and a gravimetric analysis
of the weight loss of steel (Beale and Demuth 2013), the
following empirical equation for the correction factor Cf

was derived:

Cf ¼
5:0

D0:54 IcorrTð Þ0:19
; Cf � 1:0 ð5Þ

where D is the diameter of rebar in mm, Icorr is the corrosion
current density in mA/cm2 and T is the duration of corrosion
in days.

The residual flexural strength of a rectangular beam could
be determined using Eq. (4) by substituting the value of the
calculated Cf from Eq. (5).
As stated earlier, the limitation of the above equations is

that they were based on the assumption that IcorrT and D are
linearly related to the residual flexural strength. In such a
natural phenomenon as corrosion, this will not give an op-
timal solution to the estimation problem. Basing construc-
tion projects on the results of this equation may result in sub-
optimal life spans and increase maintenance costs. In order
to overcome this limitation, ANN models, with their capa-
bility to utilize the non-linear relationship of the variables
and their ability to extract hidden patterns from datasets, are
proposed.

4. Research Methodology

4.1 Description of Data
For effective validation and comparison with the results of

previous work, we designed and implemented our ANN
models by using the same experimental data obtained and
used by Azad et al. (2010) to predict the residual strength of
corroding concrete beams. The data was obtained from an
experiment consisting of 48 RC beams of different cross-
sections and reinforcements. The beams were made of three
different depths viz. 215, 265 and 315 mm, two different

Fig. 1 The Architecture of artificial neural networks.
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diameters of tension bars viz. 16 and 18 mm, and different
durations of corrosion. The corrosion was induced by ap-
plying a direct current at a constant rate of 1.78 mA/cm2.
Out of the 48 beams, 36 were subjected to accelerated cor-
rosion. Both the corroded and un-corroded beams were
tested in a four point bend to find their load carrying capacity
using a span length of 900 mm and a flexure span of
200 mm. Statistically, the values of both Cf and Mres follow
normal distribution as shown in the histograms in Figs. 2
and 3 respectively.
The results of the basic descriptive statistics (maximum,

minimum, range, mean, variance, standard deviation, skew-
ness, and kurtosis) that further describe the dataset are pre-
sented in Table 1. The maximum statistic is the largest or the
greatest value in a set of data. The minimum is the smallest or
the least value in a given set of data. The range, the arith-
metical difference between the maximum and theminimum of
a set of data, is a statistical measure of the spread of a dataset.
The most common expression for the mean of a statistical
distribution with a discrete random variable is the mathema-
tical average of all the terms. The variance, a measure of
dispersion in a data, is the average squared distance between
the mean and each item in the population or sample.
The standard deviation, also a measure of dispersion, is the

positive square root of the variance. An advantage of the
standard deviation (compared to the variance) is that it ex-
presses dispersion in the same units as the original values in
the sample or population. Skewness is a measure of the
extent to which a probability distribution of a real-valued
random variable ‘‘leans’’ to either side of the mean. The
skewness value can be positive or negative, or even unde-
fined. When the skewness is positive, then it is said that the
distribution is skewed to the right of the mean. Similarly,
when it is negative, the distribution is skewed to the left. A
zero skewness is said to be undefined. Kurtosis is a measure
of the ‘‘peakedness’’ or the ‘‘flatness’’ of the probability
distribution of a real-valued random variable. In a similar
way to the concept of skewness, kurtosis is a descriptor of
the shape of a probability distribution.

Table 1 shows that the predictor variables are diameter (D)
and corrosion activity index I corrTð Þ while the target prop-
erties are correction factor (Cf) and residual strength Mresð Þ.
The variable D has a range of 2 with the maximum and
minimum values being 18 and 16 respectively and an av-
erage value of 17.03. The variable IcorrT has a higher range
of 30.16 with the maximum and minimum values being
32.06 and 1.90 respectively and an average value of 15.36.
The maximum, minimum, range and average values of the
Cf are much less than those of Mres. The values of Cf range
between 0.5 and 1.08 (Table 1) with most of the values
concentrated around 0.73 (Fig. 2) while Mres has its range
between 16.1 and 66 (Table 1) and those with the highest
frequency around 36 (Fig. 3). The variances and standard
deviations of D and Cf are much less than those of IcorrT and
Mres respectively. The distribution of D is skewed to the left
with a negative value while that of others is skewed to the
right with positive values. The values of the skewness, to-
gether with the statistical trends shown in Figs. 2 and 3, are
an indication that the data is not symmetrical. The negative
kurtosis of all the predictor and target variables shows that
the distribution of the data is flat rather than being peaked or
Gaussian. All these are an indication that the data is typical
of real-life experimental data and not simulated.
In order to simulate the practical application of the ANN

models, the data was divided into training and testing sub-
sets. The training subset represented the available ex-
perimental data comprising both the cross-sectional details
and their corresponding flexural strength estimations while
the testing subset represented only the experimental mea-
surements without their equivalent flexural strength estima-
tions. The models used the hidden non-linear relationship
between the experimental measurements and the target val-
ues to train the models. The trained models were then used
to predict the required flexural strength estimations given the
desired experimental measurements. This was intended to
save time, cost and man-hours while improving the accuracy.
To achieve the above implementation objective, the data was

divided in the 70:30 ratio in which 70 % was used for training
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Fig. 2 The histogram of Cf values.
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and the remaining 30 % for testing. This is similar to the k-fold
cross-validation technique and follows the standard machine
learning paradigm that requires that the training subset should
bemuchmore than the testing. This is partly meant to avoid the
overfitting and underfitting problems (Hastie et al. 2009). The
authors experimented with two data stratification strategies:
fixed and random. In the former, we used the first 70 % for
training and the remaining for testing. However, in the latter,
the authors took 70 % of the randomized sample of the data for
training and the remaining for testing. The authors opined that
the latter option is more representative of the experimental
measurements and has the potential to avoid the bias that is
usually associatedwith the choice of the training data. Hence, it
was hypothesized that the results from the randomized
stratification will be of more confidence. The outcome of this
hypothesis is revealed in Sect. 5.

4.2 Criteria for Models Evaluation
For ease of comparison and due to their common use in

predictive modeling literature, we used the comparative
coefficient of determination (R2) and root mean square error
(RMSE) to evaluate the comparative performance of the
ANN models and the empirical equation of Azad et al.
(2010). The R2 measures the statistical correlation between
the predicted (y) and actual values (x). It is expressed as:

R2 ¼ n
P

xy�
P

xð Þ
P

yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

x2ð Þ �
P

xð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

y2ð Þ �
P

yð Þ2
q ð6Þ

The RMSE is a measure of the spread of the actual x values
around the average of the predicted y values. It computes the
average of the squared differences between each predicted
value and its corresponding actual value. It is expressed as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 ðxi � yiÞ2

n

s

ð7Þ

4.3 Details of Design and Implementation
of the ANN Models
Four different ANN models were developed in this study:

A model each to directly predict the flexural strength of
corroded RC beams (Mres) and indirectly through the pre-
diction of the correlation factor (Cf). The implementation of
each of these models was carried out with fixed and random
data stratifications as discussed in Sect. 4.1. Each of the
models is basically made up of a two-hidden-layer con-
figuration with two neurons in the input layer and one in the
output layer. Our choice of this configuration is based on the
report of Beale and Demuth (2013) that a 2-layer neural
network is enough to solve most problems. The two neurons
in the input layer represent the diameter of reinforced steel
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Fig. 3 The histogram of Mres values.

Table 1 Basic descriptive statistics of the data.

Statistics Predictor variables Target properties

Diameter (D) Corrosion activity index
(Icorr T)

Correction factor (Cf) Residual strength (Mres)

Maximum 18.00 32.06 1.0767 65.98

Minimum 16.00 1.90 0.5026 16.10

Mean 17.03 15.36 0.7749 34.60

Range 2.00 30.16 0.5740 49.88

Variance 0.99 76.38 0.0275 167.11

Standard deviation 1.01 8.87 0.1683 13.12

Skewness -1.77 0.70 0.4308 0.40

Kurtosis -2.12 -0.93 -1.2438 -0.17
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(D) and corrosion activity index IcorrTð Þ while the output
neuron represents each of the target properties, Cf and Mres.
Figure 4 is a sketch of the basic architecture used in this
study showing the input layer, hidden layer, output layer and
the transfer functions in the hidden and output layers.
Following the assumption that no problem would require an

ANN model with more than 50 neurons in each hidden layer
(Beale and Demuth 2013), the optimal number of hidden neu-
rons was investigated from 1 through 50 while trying different
learning algorithms and activation functions for the hidden and
output layers. This procedure to search for optimal parameters is
necessary since each problem requires different values of these
parameters for optimal performance. Choosing the appropriate
number of hidden neurons is essential for the ultimate perfor-
mance ofANNmodels. If the number is too small, themodelwill
not adequately capture the pattern that is hidden in the data. This
leads to underfitting, which is characterized by a generally poor
performance in both training and testing (Hastie et al. 2009). If
the number is too large, the model will exert too much energy
than necessary to solve the problem. This leads to overfitting
characterized by a model performing excellently well in training
but poor in generalization on new cases (Hastie et al. 2009).
In order to avoid cases of underfitting and overfitting, we

followed the standard training procedure of ANN as pre-
sented in the following algorithm:

1. Divide data into training and testing subsets.

2. Initialize the weights and biases to some random initial values.

3. Find the dot product of weights and input vector.

4. Feed forward the results of each hidden layer to the output layer.

5.  Compare the network outputs with the original target values. 

6. If the error is equal or less than the pre-set error goal then

7. Use the network to predict the target for the testing subset.

8. Present prediction results.

9. Go to 13.

10. Otherwise

11. Back-propagate results to the end of the input layer.

12. Go to 2.

13. End.

While the optimal number of hidden neurons obtained for
each model of ANN is presented under the description of the
respective models in the following sections, the other pa-
rameters used in the design of the ANN models are:

• Number of training epochs = 100
• Error goal = 0.001
• Training algorithm = Levenberg–Marquardt
• Error criterion = Mean squared error
• Transfer function in the hidden layer = Sigmoidal
• Transfer function in the output layer = Purelin

The first two parameters above were used to determine
when to stop the training process: either the attainment of the
error goal or using the most optimal configuration obtained
on reaching the maximum number of epochs. Following the
standard machine learning paradigm, the feed-forward back-
propagation ANN models were trained by feeding a matrix
of training data complete with the input and target values.
The main objective of the training process is to optimize the
connection weights that contribute toward reducing the
prediction errors between the predicted and actual target
values to a satisfactory level (the preset error goal). This
process is carried out through the minimization of the de-
fined error function by updating the connection weights.
The feed-forward back-propagation algorithm operates in

two passes: the feed-forward pass and the back-propagation
pass. During the feed-forward pass, the initial weights (either
fixed or randomized) are applied on the input matrix and
propagated through the hidden layer(s) to the output layer.
At the output layer, the model is evaluated with a part of the
training data (called validation data) and the error between
the prediction results and the actual values of the target
variable are compared with the error goal. If the error ob-
tained is higher than the goal, the back-propagation pass is
launched. This is where the connection weights are
propagated back to the input layer where a new set of
weights are computed (or re-initialized) and the feed-forward
process continues. This loop continues until either the error
goal is achieved or the pre-defined number of epochs is
attained. The optimized parameters obtained at this point
were then used. After the errors are minimized, the trained
models with all the optimized parameters can be saved as
virtual models and used for the prediction of the target
values given any set of hypothetical or real-life input values
to be experimented with.
The following sections explain the optimization details of

each of the four models.

4.3.1 Prediction of Cf with Fixed Data Stratification
In this model (called Model 1-1), the data was divided by

taking the first 70 % and the remainder of the samples for
training and testing respectively. The model was used to
predict Cf, which would be multiplied with the computed
moment capacity Mth;c

� �
using Eq. (2). The result of the

search for the optimal number of neurons in the hidden layer
is shown in Fig. 5. From the plot, the optimal number of
hidden neurons for this model is 13. This corresponds to the
minimum number (x-axis) that gave the highest testing ac-
curacy (y-axis) with the least overfitting. The least overfit-
ting is determined by the least separation between the
training and testing points. Although, several points qualify
for this criteria but the most optimal was chosen.

Fig. 4 Basic ANN architecture used in this work.
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Figure 6 shows how the minimum error (hence the opti-
mal model) was attained with respect to the validation and
testing during the training process. Out of the 100 pre-de-
fined for the model, the minimum error was attained within 7
epochs after which the validation error continued to increase.
Hence, the best validation error attained so far at the first
epoch was chosen. It could be seen that the errors decreased
sharply at the beginning. However, after the first epoch,
while training error continues to decrease, the test and
validation errors could not converge in the same manner.
Hence, the model decided to stop the training process and
selected the best validation error attained so far.

4.3.2 Prediction of Cf with Random Data
Stratification
This model (called Model 1-2) uses the random stratifi-

cation of the data. A randomly selected 70 % and the re-
mainder of the samples were taken for training and testing
respectively. The randomization process ensured that each
sample has equal chance of being selected for training or
testing. This also ensures that there is a good mix of the data
and all experimental cases are represented in each subset.
Unlike the case of Model 1-1 (explained in Sect. 4.3.1), the
randomization procedure avoids bias and skewness in the
data given to the model for training and testing.

The optimal number of hidden neurons found and used for
this model was 3 (as shown in Fig. 7). As defined in
Sect. 4.2.1, this corresponds to the minimum number (x-
axis) that gave the highest testing accuracy (y-axis) with the
least overfitting. Similar to Fig. 4, the attainment of the
optimal validation error is shown in Fig. 8. Seeing that the
validation error could not converge after 7 epochs, the
learning algorithm stopped the training process. Hence, the
training process that gave the best error attained so far at
epoch 1 was chosen.

4.3.3 Prediction of Mres with Fixed Data
Stratification
Unlike the previous two, this model (named model 2-1)

was developed to directly predict the residual flexural
strength (Mres) without using Cf but with the same set of
input variables. Like in model 1-1, the first 70 % of the data
were used for training an ANN model while the last 30 %
was used for testing and validation. The optimal number of
hidden neurons found to be optimal for this model was 11
(as shown in Fig. 9). Details of how this value was obtained
have been explained in Sects. 4.3.1 and 4.3.2. Hence, un-
necessary repetitions will be avoided here. Figure 10 also
shows the attainment of the optimal model parameters with
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Fig. 5 Optimal number of hidden neurons for Model 1-1.

Fig. 6 Results of the training and validation for Model 1-1.
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Fig. 8 Results of the training and validation for Model 1-2.
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respect to the least validation error. According to the plot,
since the validation error could not converge after 10 epochs,
the least validation error attained at epoch 1 was chosen by
the learning algorithm.

4.3.4 Prediction of Mres with Randomized Data
Stratification
Similar to model 2-1, this model (called model 2-2) di-

rectly predicts the residual flexural strength (Mres) without
using Cf but with the randomized stratification of the dataset.
Like in model 1-2, 70 % of the data was randomly selected
for training while the remaining percentage was used to test
the generalization capability of the model. The randomized
stratification procedure resulted in data subsets that are
representative of the experimental cases. More of such de-
tails have been given in Sects. 4.3.1. and 4.3.2.
The optimal number of hidden neurons for this model was

found to be 26 (as shown in Fig. 11) while the least
validation error was attained at epoch 1. The model was
chosen when the validation error did not improve up to 7
epochs. This is shown in Fig. 12.
After the implementation of the ANN models, the results

are presented and discussed in Sect. 5.0.

5. Results and Discussion

Since the testing process simulates the capability of the
models to generalize on new and never-seen-before cases,
we focus on the testing performance of the models in the
presentation and analysis of the results. Based on the
methodology described in Sect. 4, the results of the com-
parative R2 and RMSE that were obtained from the indirect
prediction of flexural strength through Cf and the direct
prediction of Mres for the testing data subset (representing
new measurements) are shown in Figs. 13–16.
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Fig. 9 Optimal number of hidden neurons for Model 2-1.

Fig. 10 Results of the training and validation for Model 2-1.
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Fig. 12 Results of the training and validation for Model 2-2.
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Cross-plots showing the degree of correlation between the
ANN predicted results and the experimental values of Cf and
Mres are presented in Figs. 17–20.
Figure 13 compares the R2 of the empirical model by

Azad et al. (2010) with those of the ANN models in the
prediction of Cf. The figure showed that the two ANN
models performed better than the Azad’s empirical equation.
The R2 of model 1-1 had a 41 % improvement while Model
1-2 had a 49 % improvement over the empirical equation.
This also confirmed that the ANN model with a randomized
data stratification (Model 1-2) performed better than the
other one with fixed stratification (Model 1-1). For the pre-
diction of Mres, Fig. 14 also showed that the ANN models

predicted better than the Azad’s equation with Model 2-1
having a 10 % improvement and Model 2-2 having a 2 %
improvement over the empirical equation. However,
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between the ANN models, the one with the fixed data
stratification (Model 2-1) showed better correlation with
experimental data than the other one with randomized
stratification (Model 2-2).
In terms of RMSE for the prediction of Cf, Fig. 15 agreed

with the R2 results by having the RMSE of the ANN models
lower than that of the empirical equation. Model 2-1 and 2-2
respectively had an 85 and a 92 % reduction in error over the
empirical equation. This also agrees with the R2 results in
Fig. 13 that the ANN model with randomized data stratifi-
cation performed better than that with fixed stratification. For
the prediction of Mres, Fig. 16 showed that the ANN models,
despite their better performance in terms of higher R2, had
higher errors than the empirical equation. This implies that
the ANN models had higher errors associated with their
better predictions.
In the overall, the comparative results showed that the

ANN models that were used to predict Cf exhibited better
predictive capabilities than the empirical equation. However,
for optimal results, the ANN model with randomized data
stratification is preferred. Also, we recommend that it is
better to estimate the flexural strength of corroded RC beams
indirectly through the prediction of Cf. This implies that,
according to our study, going through the prediction of Cf is
a better way to predict the residual flexural strength of cor-
roded RC beams.
With the emergence of the ANN model with randomized

data stratification as a better tool to predict the flexural
strength of RC beams, we further analyze the degree of
correlation of the prediction results of the ANN models with
experimental values. Figure 17 showed that the prediction
results of Model 1-1 were in better agreement with the ex-
perimental values falling in the extremes than those in the
middle. Cf values that are less than 0.7 and more than 0.8
were predicted more accurately than those that fall between
the two. However, Fig. 18 showed the opposite as Cf values
between 0.85 and 0.95 were predicted more accurately than
those in the extremes. For the prediction of Mres, Fig. 19
showed that desptite the higher correlation, the prediction
errors are high but evenly distributed over the values.

However, Fig. 20 shows that despite having the least R2

among the ANN models, the prediction errors are low and
consistent over the values except at the highest extreme.
Since few samples fall in the highest extremes, the overall
prediction error became low. This further confirmed that the
models with random data stratification perform better than
those with fixed stratification.
Giving more credence to the preference of the random data

stratification over the fixed version is the visual comparison
of the results of the search for the optimal number of hidden
neurons for the prediction of Cf (Figs. 5 and 7) and Mres

(Figs. 9 and 11). It would be observed that Fig. 5 (fixed
stratification) is more haphazard in its fluctuation while
Fig. 7 (random stratification) is smoother and more consis-
tent. Similarly, Fig. 9 (fixed stratification) has sharper fluc-
tuations than Fig. 11 (random stratification), which is
smoother and more consistent. This behavior is probably due
to the bias created by using fixed stratification instead of the
fairer and unbiased randomized stratification. In the latter,
there is fairness as each sample in the data has equal chance
of being selected for training or testing. This perfectly agrees
with the theory of randomization (Arora and Barak 2009;
Cormen et al. 2001) and an existing study related to the
subject (Helmy et al. 2010).
This fair analysis is based on the results obtained from the

ANN models using the data obtained from a previous ex-
perimental work that was used to develop the empirical
equation. Since datasets used by other authors are not
available in the public domain, they could not be obtained
for further testing of our ANN models. However, we hy-
pothesize that, with the successful performance of the pro-
posed ANN models on the available dataset, a similar
successful performance is expected to be recorded on a wide
array of other experimental datasets. Effort will be made in
our future work to obtain such datasets for the purpose of
testing the proposed models.

6. Conclusions, Limitation and Future Work

In order to reduce the cost, effort and time associated with
persistent laboratory experiments, with the aim of benefiting
from the high volume of experimental data gathered over the
years and to increase the degree of accuracy of predictive
models, we presented four optimized ANN models to predict
the residual flexure strength of corroded RC beams with the
diameter of reinforced steel (D) and corrosion activity index
IcorrTð Þ as input variables. Computational techniques, espe-
cially ANN, have the capability to handle the non-linear rela-
tionship between predictor variables and their target values. A
number of empirical equations have been proposed in lit-
erature. However, since they are based on assumed linear re-
lationships among various predictor variables, they could not
adequately handle such a natural phenomenon as corrosion.
This study was conducted in two parts: direct prediction of

the residual strength, Mres and indirect prediction through the
correction factor, Cf. Each part was further experimented with
fixed and randomized stratification of the data into training
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Fig. 20 Experimental and ANN prediction of Mres for testing
data with random stratification.
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and testing subsets. To ensure fairness in comparison and to
increase the confidence in the outcome of the study, the same
data that was used by Azad et al. (2010) was used to train and
evaluate the performance of the ANN models. From the rig-
orous analysis of the ANN results and a comparison of the
results with those of Azad’s empirical equation, the ANN
models demonstrated superior performance.
The outcome of this study can be highlighted as follows:

• With their higher coefficients of determination, the ANN
models could be alternative modeling tools to the
empirical equation of Azad et al. (2010) in the prediction
of flexural strength of corroded RC beams. This is due to
the excellent learning capability and the dynamic nature
of ANN. Empirical correlations are static and have no
learning capability.

• The ANN models with randomized data stratification gave
better predictions than those with fixed stratification. This
is due to the fairness of the randomization process.

• The ANN models with Cf as the target variable gave
higher prediction accuracies and reduced errors than
those that direct predict Mres. Hence, we recommend to
Construction Engineers to estimate the residual flexural
strength of RC beams by multiplying the correction
factor, Cf, predicted by ANN, with the theoretical
moment capacity, Mth;c.

• Our study demonstrated that ANN models are simpler,
adaptive and more reliable tools for the prediction of
flexural strength of corroded RC beams.

Since the main objective of this work is to investigate the
capability of ANN models to predict the flexural strength of
reinforced concrete, the focus is to keep the algorithm design
and implementation simple. This follows the Occam’s Razor
principle (Jefferys and Berger 1991). Investigating the effect
of various parameters (such as the effect of data normal-
ization, activation function, different learning algorithms and
different layers) on the performance of the ANN models will
be carried out in our future work. More complex learning
paradigms such as hybrid and ensemble concepts will also
be considered.
The authors plan to confirm the consistency of the results of

this study in the continued and future work by using more
experimental data from various types of concrete samples and
published datasets from previous studies. In the continued
search for better predictive tools, it is planned to implement
other types of ANN such as Generalized Regression Neural
Networks, Radial Basis Functional Networks and Functional
Networks. More advanced computational intelligence tech-
niques such as Extreme Learning Machines, Support Vector
Machine and Type-2 Fuzzy Logic Systems will also be
considered.
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