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Abstract: The present work proposes a new image analysis method for the evaluation of the multi-walled carbon nanotube

(MWNT) distribution in a cement matrix. In this method, white cement was used instead of ordinary Portland cement with MWNT

in an effort to differentiate MWNT from the cement matrix. In addition, MWNT-embedded cement composites were fabricated

under different flows of fresh composite mixtures, incorporating a constant MWNT content (0.6 wt%) to verify correlation

between the MWNT distribution and flow. The image analysis demonstrated that the MWNT distribution was significantly

enhanced in the composites fabricated under a low flow condition, and DC conductivity results revealed the dramatic increase in

the conductivity of the composites fabricated under the same condition, which supported the image analysis results. The com-

posites were also prepared under the low flow condition (114 mm\ flow\ 126 mm), incorporating various MWNT contents.

The image analysis of the composites revealed an increase in the planar occupation ratio of MWNT, and DC conductivity results

exhibited dramatic increase in the conductivity (percolation phenomena) as the MWNT content increased. The image analysis and

DC conductivity results indicated that fabrication of the composites under the low flow condition was an effective way to enhance

the MWNT distribution.
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1. Introduction

The electrical and mechanical properties of cement com-
posites with conductive fibers are significantly influenced by
the fiber distribution (Sorensen et al. 2014; Liu et al. 2011;
Lee et al. 2009). The electrical properties can be enhanced
by the formation of conductive fiber networks. The
mechanical properties can also be improved by the effect of
fibers bridging micro-cracks, whereas they deteriorated in
the base of a non-uniform distribution of fibers (Sorensen
et al. 2014; Liu et al. 2011). Accordingly, evaluation of the
fiber distribution is important in understanding its influence
on the physical properties of the composite materials and
making full use of fibers (Liu et al. 2011).
Evaluation methods for the fiber distribution can be classi-

fied into two categories—image analyses and electrical prop-
erty analyses. An image analysis entails acquisition of images
via a microscope (optical microscope, scanning electron
microscope (SEM), etc.) or a transmission X-ray and image
processing and analysis. Lee et al. (2009) andKang et al. (2011)
obtained cross sectional images of composite materials via an

opticalmicroscope (Lee et al. 2009; Kang et al. 2011). Lee et al.
(2002) and Liu et al. (2011) obtained images via digital cameras
(Lee et al. 2002; Liu et al. 2011). Redon et al. (1999) usedX-ray
photography and Fan et al. (2000) used a SEM to capture fiber
distribution images (Redon et al. 1999; Fan et al. 2000). On the
other hand, the fiber distribution state can also be evaluated by
theDCconductivity orAC impedance. Li et al. (2007) analyzed
MWNT distribution states using the DC conductivity and
Ozyurt et al. (2006) evaluated the degree of carbon fiber
clumping and fiber orientation by AC impedance spectroscopy
(Li et al. 2007; Ozyurt et al. 2006). In the case of the electrical
property analysis method, it is only applicable to conductive
fiber-incorporated composite materials.
The image analysis is a more direct and convincing

approach in that actual fiber distribution states in the com-
posite materials can be evaluated. The electrical property
analysis method is an indirect approach for evaluation of the
fiber distribution, but sometimes it is affected by other
parameters (matrix type, moisture content in matrix, etc.),
possibly leading to incorrect electrical property results.
Accordingly, the image analysis plays an important role in
the evaluation of fiber distributions and it is a critical tech-
nique that should be carried out along with an electrical
property analysis (Li et al. 2007; Ozyurt et al. 2006).
Uncovered in 1991, carbon nanotube (CNT) has gained

great attention from researchers attributable to its remarkable
physical properties (Li et al. 2007; Kim et al. 2014). From
2010s, CNT has been used as a nano-scale fiber in cement-
based composites in an effort to enhance physical properties

Department of Civil and Environmental Engineering,

Korea Advanced Institute of Science and Technology,

Daejeon 34141, South Korea.

*Corresponding Author; E-mail: haengki@kaist.ac.kr

Copyright � The Author(s) 2015. This article is published

with open access at Springerlink.com

International Journal of Concrete Structures and Materials
Vol.9, No.4, pp.427–438, December 2015
DOI 10.1007/s40069-015-0121-8
ISSN 1976-0485 / eISSN 2234-1315

427

http://crossmark.crossref.org/dialog/?doi=10.1007/s40069-015-0121-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40069-015-0121-8&amp;domain=pdf


of the composites (Kim et al. 2014). Various approaches
have been explored to evaluate CNT distributions in the
literature. SEM observation has been the most common
approach to study the CNT distribution state, carried out in
tandem with an electrical property analysis (Konsta-Gdoutos
et al. 2010). However, the SEM observations may vary
depending on observation spots in the same sample since it
is mostly conducted with high magnification levels (up to
3000-fold). Accordingly, the CNT distribution should be
observed and evaluated at low magnification levels and the
evaluation results should be compared with electrical prop-
erties of the CNT-embedded composites.
In the present work, a novel image analysis method to

evaluate the multi-walled carbon nanotube (MWNT) distri-
bution in cement-based composites is proposed. In this
approach, white cement was used instead of ordinary Port-
land cement (OPC) with MWNT in an effort to differentiate
MWNT from the cement matrix. MWNT distribution images
in the cement matrix materials were acquired by using an
optical microscope in conjunction with image processing
tools. The MWNT distribution was quantitatively assessed
in terms of the planar occupation ratio of MWNT. In
preparation of specimens, a novel method was adopted for
dispersion of CNT in cement. This method was proposed on
the basis of experimental attempts previously conducted by
the authors. It was suggested that the distribution of CNT can
be enhanced by means of lowering the fluidity of CNT/
cement mixture at fresh state. It is notable that the suggested
method does not require sonication technique, acid treat-
ment, etc., which were widely demonstrated in the literature.
To verify correlation between the MWNT distribution and
flow of the mixtures, MWNT-embedded cement composites
were fabricated under different flows, incorporating a con-
stant MWNT content (0.6 wt%). The image analysis
demonstrated that the MWNT distribution was significantly
enhanced in the composites fabricated under a low flow
condition, and DC conductivity measurement results
revealed the dramatic increase in the conductivity of the
composites fabricated under the low flow condition, which
supported the image analysis results. The composites were
also prepared under the low flow condition
(114 mm\flow\ 126 mm), incorporating various MWNT
contents. The image analysis and DC conductivity results
demonstrated remarkable enhancement in the planar occu-
pation ratio of MWNT and the conductivity, respectively,
which indicated that fabrication of the composites under the
low flow condition was an effective way to enhance the
MWNT distribution.

2. Materials

MWNT, Portland cement, nylon fiber, super-plasticizer, tap
water, and silica fume (SF) were used in the present work.
MWNT produced through the chemical vapor deposition
(CVD) growth method, a proprietary product of Hyosung Inc.
(M1111), was used (Nam et al. 2012). Their purity, diameter,
and aspect ratio were 96.2 %, 12.29 ± 2.18 nm, and 930

(aspect ratio was approximate value), respectively. Type I
ordinary Portland cement was used in the present work. SF, a
proprietary product of Elkem Inc. (EMS-970 D), contained
over 90 % silicon oxide (SiO) and 80 wt% of its primary
particles have a diameter greater than 5 lm.White cementwas
used instead of OPC when image analysis samples were fab-
ricated. Nylon fiber, a proprietary product of Nycon fibers Inc.
(NYMAX), was used in an effort to prevent cracks that occur
due to shrinkage while cement matrix materials cured. Their
diameter and length were 23–36 lm and 3 mm, respectively.
A poly-carboxylic acid-based super-plasticizer (SP), a pro-
prietary product of BASF Pozzolith Ltd., (Rheobuild
SP8HU), was utilized in an effort to improve the workability
of the fresh cement matrix materials. The true specific gravity
of MWNT, Portland cement, SP, tap water, and SF was 1.32,
3.15, 1.07, 1, and 2.1, respectively.

3. Methods

3.1 Image Analysis of MWNT Distribution in
MWNT-Embedded Cement Composites
3.1.1 SpecimenPreparationand ImageAcquisition

for Image Analysis
A novel image analysis approach was proposed in an

effort to evaluate the MWNT distribution in cement matrix
materials. In order to distinguish MWNT with black color
from OPC, which also shows a fairly dark color, white
cement was used in place of OPC when composite speci-
mens were fabricated for the image analysis. In addition to
using white cement instead of OPC, the incorporation of
nylon fiber was omitted in the preparation of the samples for
the image analysis since crack control was unnecessary. The
constituent materials (white cement, MWNT, water, and SP)
were weighed according to mixing ratios and placed together
in a steel bowl.
Table 1 shows the mix proportions of composites fabricated

with different W/C values, which will be dealt in Sect. 4.1.1.
The mix proportions for composites fabricated under a con-
trolled low flow condition (from 114 to 126 mm) with various
MWNTcontents are presented inTable 2,whichwill be dealt in
Sect. 4.2.1. The weighed materials were thoroughly mixed for
20 min by an electric hand mixer. The electric hand mixer
consisted of two curl shaped-beaters and their rotation rate was
approximately 200 rpm. The fresh mixtures were poured into
plastic molds that were designed in accordance with the sample
size. The sample size was 10 9 10 9 80 (mm3) for the image
analysis. After pouring the fresh mixtures in the molds, they
were covered with a plastic plate (or wrapping film) in an effort
to avoid moisture loss of the samples and cured for 24–48 h at
room temperature (18–20 �C) under a humid condition
(40–50 %), and then detached from the molds.
In an effort to produce a fracture surface, a cutting knife

was used to make a cutting guide line with depth of
approximately 1 mm at the center of the sample. The sample
was split into two parts applying manual force by hand to the
cutting guide. Each split part was sliced by means of a hand
saw at 3 mm from the fracture surface. As a result, a
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specimen with size of 10 9 10 9 3 mm3 was prepared from
the original sample.
A magnification to cover MWNT agglomerates whose

diameter ranged from 3 to 200 lm was selected by a trial and
error process and determined as 50-fold. An auto stage optical
microscope (Olympus MX51) was used so that visible light
could be used to distinguish MWNT (black) from the cement
matrix (white). The microscope system illuminates the spec-
imen with uniform brightness and transfers the observation
image to image processing software, DotSlide. Since the
optical focus at each local spot of the fractured specimen
changes due to unevenness of the specimen surface, the
microscope system captured observation images at every
3 lm along the out of plane direction from the deepest level to
the highest level of the fractured surface. By using the image
processing software, focused local spots in the captured ima-
ges were collected and combined to form a single image that is
in focus overall. Two images of each specimen were gained
through the aforementioned procedure.

3.1.2 Image Processing and Analysis Procedures
In microscopic images, the black amorphous agglomerates

indicated MWNTs. The contrast of white cement and
MWNT was seen remarkably well by the naked eye. By
image processing and analysis with the commercial soft-
ware, the MWNT distribution can be quantitatively evalu-
ated. Stepwise tasks were carried out in the following order
(illustrations for each step can be found in Fig. 1) with the
fractured specimens.

(1) Image acquisition by microscope in collaboration with
a digital camera

(2) Capture areas that are optically well focused and
assemble them so a well-focused image can be
completed (conducted by DotSlide)

(3) Convert the image to a black and white image by
thresholding

(4) Reverse the black and white image
(5) Convert the black and white image to a binary image
(6) Acquire data (area) of agglomerate regions

Steps (1) to (2) were conducted by the microscope system
and the remaining steps were conducted using a MATLAB
Image processing tool box. Automatic brightness control
was applied in step (1) by the microscope system. The effect
of change of brightness level on the image thresholding was
considered a minor factor and hence was ignored in the
present work. Otsu (1979)’s automatic thresholding method
was used in the thresholding process of step (3) (Otsu 1979).
The gray-level scale, which is determined between 0 and 1,
was used with a 15 % reduction (gray-level scale 9 0.85)
since the brightness of MWNT was considered high when
compared with the original image. After the reversion pro-
cess (4), bright parts indicated MWNT. Accordingly, the
planar occupation area of the bright parts expressed as 1 in
the corresponding binary image, was summed. The planar
occupation ratio of bright parts can be calculated by dividing
the sum total of the bright parts by the total area of the
corresponding image. The planar occupation ratio of MWNT

Table 1 Constituent materials and their mix proportions of the MWNT-embedded cement composites fabricated under different
flow.

Denotations Mix proportions (g) MWNT (vol%)

Water Cement SF SP Nylon fiber MWNT

W26–M06 26 100 20 1.6 0 (omitted) 0.6 0.66

W30–M06 30 0.62

W34–M06 34 0.59

W38–M06 38 0.56

W42–M06 42 0.53

Table 2 Constituent materials and their mix proportions of the composites fabricated under the low flow condition
(114 mm\ flow\126 mm).

Denotations Mix proportions (g) Flow (mm)

Group Type Water Cement MWNT SP Nylon fiber

Wt% by
cement

Vol%

LF–M LF–M0 25 100 0 0 0.6 0.2 160

LF–M0.3 25 0.3 0.39 1.0 126

LF–M0.6 25 0.6 0.76 3 125

LF–M1.0 30 1.0 1.14 4.54 120

LF–M1.5 36 1.5 1.56 4.4 114
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was calculated from each of two images and an average
value was determined from the ratios.

3.2 DC Conductivity of the MWNT-Embedded
Cement Composites
3.2.1 Specimen Preparation for DC Conductivity

Measurement
The preparation procedures of samples for DC conductivity

measurement followed the specimen preparation procedures
for the image analysis in Sect. 3.1.1. However, OPC was used
as cement material in this experiment and nylon fiber was
used. The constituent materials of the composites were pre-
pared in accordance with mix proportions. In particular, the

mix proportions for composites prepared with different flows
and constantMWNTcontent are presented in Table 3, andDC
conductivity of the composites will be dealt in Sect. 4.1.2. On
the other hand, Tables 2 and 4 show the mix proportions of
composites fabricated under the low flow condition and a high
flow condition (over 250 mm), which will be dealt in
Sect. 4.2.2 in terms of DC conductivity. The constituent
materials were weighed according to the mix proportions and
mixed by using the electric hand mixer. The resultant fresh
mixture was decanted into plasticmolds designedwith the size
25 9 25 9 25 (mm3). After undergoing 1 day’s curing under
conditions explained in Sect. 3.1.1, the samples were sepa-
rated from the molds. In an effort to gain mechanical strength

Fig. 1 Image processing procedures (image size: 295 9 355 pixel): a Image acquisition, b gathering of areas that are well
optically focused and assemble them together, c conversion of the image to a black and white image by thresholding,
d reversal of the image, and e conversion of the image to a binary image.
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to prevent unexpected damages in the samples, they were
submerged in water during 7 days.

3.2.2 Measurement Method
Li et al. (2007) and Xie et al. (1996) revealed that the CNT

distribution in CNT-added composite materials can be
assessed by examining the DC conductivity of the materials
(Li et al. 2007; Xie et al. 1996). Once SEM or transmission
electron microscopy (TEM) reveal that CNTs are homoge-
neously dispersed in the composite materials, DC conduc-
tivity evaluation can be used in an effort to identify the
percolation network, which is a large cluster network span-
ning from one side to the opposite side without disconnec-
tion in the composite materials (Stauffer and Aharony 1994).
The measurement method of DC conductivity in the pre-

sent work complied with a standard method presented in
SEMI MF43 (2005). As electrodes for the measurement, a
pair of copper plates having dimensions of 10 9 35 9 0.5
(mm3) was inserted in the center part of the sample with a
spacing of 8 mm as shown in Fig. 1 of Nam et al. (2015).
The copper electrodes were embedded when the composite
mixtures were still fresh. As another pair of electrodes, both
sides of the samples were coated with silver paste as shown

in Fig. 1 of Nam et al. (2015). A power supply equipment
(Agilent E3642A) generated DC current, and it was passed
through the silver paste electrodes. Due to the supply of
current in resistors, which are the MWNT-embedded cement
composites, potential difference in the composites was cre-
ated, and it was measured by a digital multimeter (Agilent
34410A) connected with the copper plates. The supplied
current was automatically controlled by the power supplier
with a limitation up to 0.2 A and the resultant voltage was
produced with a limitation up to 20 V. Figure 2 illustrates
the measurement method for DC conductivity.
The resistance of the composites was calculated on the

basis of Ohm’s law. For the determination of DC conduc-
tivity, the calculated resistance value (R), cross sectional area
of the electrode in contact with the composites (A), and the
interval of the electrodes (L) were plugged into a following
equation (Xie et al. 1996; Vance et al. 2014)

r ¼ 1

q
¼ L

R� A
¼ 0:8 cm

R� ð2:5 cm� 1 cmÞ ðS=cmÞ ð1Þ

3.3 Flow of the Composite Mixtures
The flow of fresh mixture of the composites was tested on

the basis of ASTM C1437 (ASTM International 2013). In

Table 3 The constituent materials and their weight content ratios of the composites fabricated under different flow in an effort to
understand change of the MWNT distribution by examining the DC conductivity of the composites.

Denotations Mix proportions (g)

Water Cement SF SP Nylon fiber MWNT Flow (mm)

M06–W26 26 100 20 1.6 0.2 0.6 102

M06–W30 30 127

M06–W34 34 151

M06–W38 38 211

M06–W40 40 250

M06–W42 42 [250

M06–SP0 40 0 130

M06–SP04 0.4 119

M06–SP16 1.6 250

M06–SP32 3.2 [250

M06–SP64 6.4 [250

Table 4 The constituent materials and their mix proportions of the composites fabricated under the high flow condition
(flow[250 mm).

Denotations Mix proportions (g)

Group Type Water Cement MWNT SP Nylon fiber

Wt% by cement Vol%

HF-M HF-M0 40 100 0 0 1.6 0.2

HF-M0.3 0.3 0.31

HF-M0.6 0.6 0.62

HF-M1.0 1.0 1.02
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addition, the flow was determined from an average of mix-
ture’s diameter after dropping the flow table.

4. Results and Discussion

4.1 MWNTDistribution inCompositesFabricated
Under Different Flows
4.1.1 Image Analysis of MWNT Distribution State

in the Composites Fabricated Under Different Flows
Through preliminary tests on MWNT-embedded cement

composites, it is found that the flow of the fresh mixture may
influence the MWNT distribution. Accordingly, MWNT-
embedded cement composites fabricated with different W/C
values were prepared and the MWNT distribution state of
the composites was evaluated. The constituent materials are
listed in Table 1. The mixing ratio of MWNT was 0.6 wt%
in order to provide a sufficient amount of MWNT. 0.6 wt%
of MWNT exceeded the percolation threshold as reported in
the literature (Nam et al. 2015). Accordingly, the distribution
of MWNT was expected to be pronouncedly visible. The
volumetric fractions (vol%) of MWNTwere also provided in
the table. In determination procedures of volumetric frac-
tions of MWNT, volume of each constituent material had to
be calculated by using true specific gravity of the materials
shown in the Sect. 2, then volume ratio of MWNT to total
volume of the mixture was obtained. 20 % (by cement
weight) SF was added in the mixtures under the considera-
tion that SF can improve the MWNT distribution (Nam et al.
2012). The white cement was substituted for OPC and the
incorporation of nylon fiber was omitted, as addressed in
Sect. 3.1.1. The specimens were prepared and images of
fractured surfaces of the specimens were obtained according
to the method described in Sect. 3.1.2.
Figure 3 presents processed images that were obtained

from the fabricated specimens. In the processed images, the
total area of the MWNT agglomerates appeared to decrease
with an increase of the flow (or W/C ratio). Moreover,
MWNT clumps, which are excessively entangled-MWNT
agglomerates, were generated as the flow increased. Based
on these observations, it can be surmised that MWNT
agglomerates disentangled as the flow (or W/C ratio)
decreased.

In an effort to express the change of the MWNT distri-
bution states in a quantitative manner, the proportion of
MWNT agglomerates, indicated by white color, to the total
area of the image, was calculated by the MATLAB image
processing tool box. This proportion is designated as a
q value. The q value refers to the planar occupation ratio of
MWNT on a fractured surface of the composite.
Figure 4 shows an increase of the q value as the W/C ratio

of the cement composites decreases. The q value doubled
due to a 16 % reduction of the W/C ratio. The increase of the
q value was attributed to disentanglement of the MWNT
agglomerates. The disentanglement of the MWNT agglom-
erates can be explained by variation of the microstructure of
the fresh mixture. Figure 5a shows the microstructure of the
fresh mixture of the MWNT-embedded cement composite
prepared under a high flow condition. The distance between
unhydrated cements increased as the W/C ratio (or SP/C
ratio, i.e. SP versus cement ratio) increased (Daimon and
Roy 1979). When the interspace among the unhydrated
cements increased, highly entangled MWNTs floated in the
free water. This is ascribed to hydrophobic characteristics of
MWNT. As a result, the images obtained from the W38–
M06 and W42–M06 samples showed the highly entangled
MWNTs, as presented in the Fig. 3. On the contrary, the
microstructure of the fresh mixture of the composites can be
changed if the flow of the mixture is decreased. The distance
between unhydrated cements in the composites prepared
under a low flow condition was narrowed, as shown in
Fig. 5b. If the interspace is narrowed, the MWNT agglom-
erates can be disentangled during the mixing process. This is
attributable to the characteristic that the size of the MWNT
agglomerates can be restricted by the size of the interspace
among the unhydrated cements. As a result, the images
obtained from the W26–M06 and W30–M06 specimens in
the Fig. 3 showed disentangled MWNT agglomerates.
The planar occupation ratio of MWNT, q, was increased

twofold with decrease of W/C ratio from 42 to 26 % as
shown in the image analysis result of Fig. 4. However,
electrical conductivity of the composites is expected to
increase more than hundreds of times as the W/C ratio
decreases. This stems from that disconnected CNTs can be
electrically connected attributable to the enhancement of
MWNT distribution. Accordingly, it can be said that the
twofold greater q value can lead to a dramatic increase in the
electrical conductivity. This will be dealt in the electrical
property characterization section.

4.1.2 DC Conductivity of the Composites Fabricated
Under Different Flows
The image analysis of the MWNT distribution state of the

MWNT-embedded cement composites fabricated under dif-
ferent flows (or W/C) studied in Sect. 4.1.1 showed that the
MWNT distribution improved as the flow of the composite
decreased. In the present section, the DC conductivity of the
composites was examined in an effort to understand the
change of the MWNT distribution in the composites and also
to verify whether it supported the image analysis results. The
constituent materials and respective weight content ratios of

Current Supply

Voltage
Measurement

Copper electrode

Siver paste coating

MWNT-embedded
cement composite

Fig. 2 A schematic illustration of the DC conductivity mea-
surement for the composites.
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the composites are given in Table 3. To make specimens
with different flows, one group of specimens was fabricated
by varying the water content, as described in Sect. 4.1.1, and
an additional group of specimens was fabricated by varying
the SP content in the present section. The fabrication pro-
cedures of the specimens followed descriptions in

Sect. 3.2.1 and the measurement method was described in
Sect. 3.2.2.
The variations in the DC conductivity of the specimens are

plotted in Fig. 6a, b. The change of the DC conductivity of
the specimen group prepared with different water content is
shown in the Fig. 6a and the results of the specimen group
prepared with different SP content are shown in Fig. 6b. An
electrical percolation phenomenon can be observed in the
electrical conductivity versus W/C ratio plot in the Fig. 6a.
This phenomenon indicated that the water content or flow of
the mixture is a crucial factor affecting the MWNT distri-
bution of the composites, as found in the image analysis in
Sect. 4.1.1. The dramatic increase of electrical conductivity
with a decrease of the flow is attributed to disentanglement
of the MWNT agglomerates, as shown in the image analysis.
In the image analysis, the q value linearly increased with a
decrease of the W/C ratio but the electrical conductivity
exponentially increased with the decrease of the W/C ratio.
This was due to the formation of the percolation network,
which induced a remarkable increase of the DC conductivity
of some orders. The Fig. 6b, which presents the electrical
conductivity versus SP/C ratio plot, also shows the electrical
percolation phenomenon. This indicates that the flow plays a
decisive role in determining the MWNT distribution,

Fig. 4 The variation of the q value, which is the planar
occupation of MWNT on the fractured surface of the
composites, as a function of W/C ratio.

Fig. 3 The fractured surface of the MWNT-embedded cement composites fabricated under different flow (W/C ratio) after having
the image thresholding, reversion, and binarization processes (image size: 570 9 426 pixel): a W26–M06, b W30–M06,
c W38–M06, and d W42–M06.
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because water content was constant in the specimen group
with different SP/C ratio. It is consequently found that the
flow of fresh mixture of the composites is an important
factor that determines the MWNT distribution state, based
on the image analysis and the electrical conductivity eval-
uation. The improvement of the MWNT distribution with a
decrease of the flow is thought to be related to variation of
the interspace among unhydrated cement, as discussed in
Sect. 4.1.1.
It is worth noting that the electrical conductivity of the

M06–W30 was greater than that of the M06–SP04 although
the flow of the M06–W30 was higher than that of the M06–
SP04. This indicates that control of water content can be a
more effective way of enhancing the electrical conductivity
of the composites.
Therefore, two categories of specimens were prepared in

the subsequent experiments. One category included MWNT-
embedded cement composites fabricated under a high
flow condition (flow[ 250 mm) and another category
included composites fabricated under a low flow condition
(114 mm\flow\ 126 mm) by adjusting the W/C ratio and

the SP/C ratio. To understand the MWNT distribution states,
the image analysis and DC conductivity measurement for the
specimen groups were carried out.

4.2 Influence of the Flow on MWNT Distribution
in the Composites Incorporating Various MWNT
Contents
4.2.1 Image Analysis of the MWNT Distribution

State in the Composites
It was found that the flow of fresh mixture was closely

related with the MWNT distribution, as observed in
Sect. 4.1.2. Accordingly, the MWNT distribution states in
MWNT-embedded cement composites with various MWNT
contents can be compared by setting the flow of mixtures to
be consistently low (flow between 114 and 126 mm).
Otherwise, the MWNT distribution is so poor that the reli-
ability of the image analysis data obtained from the com-
posites with various MWNT contents can diminish. To
prepare composite mixtures with the low flow values,
cement composites with various MWNT contents were
fabricated by adjusting the content ratios of water and SP.

Fig. 5 Micro structure of fresh mixture of the MWNT-embedded cement composites prepared under the high flow condition (a) and
the low flow condition (b).

Fig. 6 The DC conductivity of the MWNT-embedded cement composites fabricated as a function of W/C ratio (a) and SP/C
ratio (b).
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The water to cement ratio was controlled with reference to
the MWNT content in each batch. This was based on a report
that MWNT tends to absorb water within its hollow structure
(Striolo et al. 2005). The SP content ratio was also adjusted
in consideration of the amount of cement and MWNT, but
the final SP content was determined by some trials of SP
addition in the mixture and flow test. The constituent
materials used in the present work are listed in Table 2 but
nylon fiber was not used for the image analysis specimens.
The mixing ratio of MWNT ranged from 0 to 1.5 %. Fig-
ure 7 presents processed images obtained from the fabri-
cated composites. Images observed from LF–M0 showed
some particles that were thought to be impurities of the white
cement. However, their planar occupation area was so small
that it was negligible in a comparison study of the q value.
It is generally agreed that an increase in the MWNT

content is accompanied with an increase in the total area of
MWNT if it is uniformly distributed throughout composites.
Such phenomena was in close agreement with the test result
provided in Fig. 7 where the total area of MWNT was
observed to increase with the MWNT content. In addition,
the MWNT clumps were not found even when the MWNT
content was increased up to 1.5 %. Observation of the
images thus indicated that MWNT was satisfactorily dis-
tributed throughout the composites in the LF–M group.

In an effort to express the change of MWNT distribution
states in a quantitative manner, the q value was calculated for
the LF–M group, as shown in Fig. 8. The q values of the
group exhibited a steady increase as a function of the
MWNT content in the composites. Accordingly, a dramatic
increase in the electrical conductivity is expected as the
MWNT content increases.
An image analysis of the MWNT distribution state in the

composites fabricated under the high flow condition was not
carried out because it was not possible to present reliable
q values due to the presence of the MWNT clumps, as shown
in the W42–M06 specimen of the Fig. 3.

4.2.2 DC Conductivity of the Composites
Incorporating Various MWNT Contents
The change of the DC conductivity of composites fabri-

cated under the two different flow condition, the low and
high flow conditions, with various MWNT contents was
investigated here. The constituent materials and respective
weight content ratios of the composites fabricated under the
low flow condition are given in the Table 2. The DC con-
ductivity of the composites in the LF–M group is shown as a
function of the MWNT content in Fig. 9. DC conductivity of
1.7 S m-1 was attained for specimen LF–M1.5. This value
was greater than the electrical conductivity of 5 mm long

Fig. 7 The fractured surface of the cement composites of the LF–M group fabricated under the low flow condition after having
image thresholding, reversion, and binarization processes (Image size: 570 9 426 pixel): a LF–M0, b LF–M0.3, c LF–M0.6,
and d LF–M1.5.
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carbon fiber-incorporated cement composites and carbon
black-filled cement composites (Wen and Chung 2007; Li
et al. 2006). The high DC conductivity of the composites in
the present section and the image analysis conducted in
Sect. 4.2.1 indicated that MWNT was well distributed in the
cement matrix.
The electrical percolation phenomenon of the LF–M group

was found in the Fig. 9. The percolation threshold, which
refers to the critical volume fraction of MWNT inducing
remarkable change in the conductive phase, existed in a
MWNT content range of 0–0.3 wt% for the LF–M group.
Accordingly, the percolation threshold corresponded to
0.196 vol% if it is determined as the mean value of the
percolation threshold range.
The percolation phenomena manifested in the MWNT-

embedded cement composites fabricated under the low flow
condition indicated that MWNT was well distributed
throughout the composites and the MWNT distribution was
consistent in the specimen group. The results supported the
image analysis results obtained in Sect. 4.2.1. Based on the
image analysis results and the electrical percolation

phenomena, an acceptable MWNT distribution was attained
by reducing the flow of the composites. Consequently, it can
be concluded that maintaining the low flow of fresh mixtures
of the composites is crucial to improve the MWNT
distribution.
The change of the DC conductivity of the composites

fabricated under the high flow condition with various
MWNT contents was also investigated. The constituent
materials and respective weight content ratios of the com-
posites are given in Table 4 (Nam et al. 2012). MWNT was
incorporated in each composite type at 0, 0.3, 0.6, and
1.0 wt% by weight of cement. To fabricate specimens with
high flow, the W/C ratio was fixed to 0.4 in the composites
and the SP/C ratio was 0.016.
Figure 10 presents the change of the DC conductivity of the

composites as a function of theMWNTcontent. The electrical
percolation phenomenon was not found in Fig. 10. The DC
conductivity of all the composites did not exceed
0.001 S m-1, hence all the composites appeared to be under
the percolation threshold. The under percolation behavior of
the DC conductivity was attributed to a poor distribution of
MWNT in the composites. In addition, the DC conductivity of
the composites may be dependent on many factors such as the
dry condition of the specimens, void ratio, contact resistance
between electrodes and the composite specimens, etc. In
conclusion, it is not recommended that MWNT-embedded
cement composites are fabricated under a high flow condition
unless appropriate dispersion methods were carried out.

5. Conclusion

In the present work, the MWNT distribution in MWNT-
embedded cement composites was evaluated by a newly
proposed image analysis method as well as electrical con-
ductivity measurement. In addition, the influence of the fresh
mixture’s flow on the MWNT distribution in the composites
was experimentally studied on the basis of the two evalua-
tion methods. The conclusions derived from the present
work can be summarized as follow.

Fig. 8 A comparison of the q value, which is the proportion of
MWNT agglomerates to total area of the image, of the
specimens in the LF–M group.

Fig. 9 The experimental conductivity values of the speci-
mens fabricated under the low flow condition
(114 mm\ flow\126 mm).

Fig. 10 The variations of the DC conductivity of the spec-
imens fabricated under the high flow condition
(flow[250 mm) are plotted as a function of the
MWNT content.
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(1) The MWNT distribution, which was evaluated by the
planar occupation ratio of MWNT, q, was enhanced as
the flow of fresh composite mixtures decreased.

(2) The DC conductivity of MWNT-embedded cement
composites fabricated with different flows was exam-
ined and it was observed that the conductivity
increased as the flow was decreased.

(3) The image analysis of the MWNT-embedded cement
composites fabricated under the low flow condition
(114 mm\ flow\ 126 mm) revealed that the q value
linearly increased as the MWNT content increased. The
linear relationship between the q value and the MWNT
content demonstrated that fabrication of the composites
under the low flow condition is an effective way to
enhance the MWNT distribution.

(4) The DC conductivity of the MWNT-embedded cement
composites fabricated under the low flow condition
showed percolation phenomena, thus indicating that
MWNT was well distributed in the composites, as
evaluated in the image analysis.

The proposed image analysis procedures for evaluation of
the MWNT distribution can be used as an evaluation method
to quantify the distribution of carbon nano-materials in the
cement matrix. The conductive MWNT-embedded cement
composites with percolative networks produced by control-
ling the flow are expected to be utilized as piezoresistive
sensors, EMI shielding materials, electrostatic discharge
materials, heating elements, etc. Future work will be focused
on in-depth study of the origin of the flow effect on the
MWNT distribution.
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