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Abstract 

Alkali‑activated concrete (AAC) has attained great popularity since finding it as an alternative to Portland cement 
concrete due to its superior characteristics in terms of mechanical properties and durability, and its low negative 
environmental impact. This research investigated both experimentally and analytically the bond behavior between 
alkali‑activated slag concrete (AASC) and steel rebars considering some important parameters (rebar diameter and 
development length‑to‑diameter ratio) before and after exposure to elevated temperature using beam‑end bond 
testing technique. The obtained experimental results were compared with those obtained from applying the CEB‑FIP 
model and the well‑known available equations in the literature. A modified model was proposed for predicting the 
bond behavior of AASC. Results have showed that the CEB‑FIP model provides more conservative values for bond 
strength compared to the experimentally obtained results which increases the safety level when estimating the bond 
strength for design purposes. The proposed modified model achieved a higher correlation with the experimental 
results than the CEB‑FIP model at ambient temperature.

Keywords Alkali‑activated concrete, GGBFS, Alkali‑activation, Ambient cured, Bond behavior, Elevated temperature, 
Beam‑end bond testing technique

1 Introduction
The environmental impact of ordinary Portland cement 
(OPC) production is mainly due to the energy consumed 
intensively in its manufacturing process. Moreover, the 
cement industry alone is responsible for approximately 
6–7% of the total greenhouse gases emitted all over the 
world (Bijen, 1996; Pal, 2018; Refaat et  al., 2021). To 
suppress these drawbacks, the construction industry 

is looking forward to develop innovative binders valid 
to be an alternative to OPC (Bastidas et al., 2008; Gong 
& Yang, 2000; Grutzeck et  al., 2004; Khalil et  al., 2020; 
Kotop et  al., 2021; Palomo et  al., 1999; Provis & Van 
Deventer, 2009a; Puertas et  al., 2000). To that extent, 
the ecological dream of producing Portland cement-free 
concrete, started to come true, when researchers began 
to utilize industrial by-products or natural materials that 
are rich with aluminate and silicate, and activating them 
by alkali-activators. The obtained alkali-activated bind-
ers get mixed with both of fine and coarse aggregates and 
when being hardened through appropriate conditions 
forming alkali-activated concrete (AAC) (Amer et  al., 
2020, 2021a, 2021b; Davidovits, 1991; Lee & Lee, 2013; 
Ravikumar et  al., 2010; Thomas & Peethamparan, 2015; 
Zhang et al., 2020).  CO2 emissions result from manufac-
turing alkali-activated binder is around 50–80% lower 
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than OPC composites production (Duxson et  al., 2007; 
Provis & Van Deventer, 2009b).

Many significant studies have been conducted on 
AAC to address the manufacturing of AAC using dif-
ferent types of source materials for obtaining desirable 
mechanical characteristics (Abdulrahman et  al., 2021; 
Allaoui et al., 2022; Okoye et al., 2015; Xie et al., 2018), 
while studies concerned with its structural performance 
are still limited (Ma et al., 2018; Mo et al., 2016; Nikbakht 
et al., 2021; Unis Ahmed, et al., 2022). The bond behavior 
of steel-reinforced AAC is a vital property that has to be 
established to ensure the achievement of sufficient bond 
between the steel rebars and the surrounding AAC (Al-
Azzawi et al., 2018; Albidah et al., 2020; Romanazzi et al., 
2022; Yang, et al., 2022). Particular investigation has been 
performed to evaluate the bond performance between 
AAC and rebars (Ahmad & Bhargava, 2020; Alharbi et al., 
2021a; Sarker, 2011; Sofi et al., 2007; Zhang et al., 2016). 
It was drawn that AAC demonstrated better bond perfor-
mance compared with conventional concrete (Castel & 
Foster, 2015; Sarker, 2011). Also it was reported that the 
bond performance was improved with increasing both of 
the concrete cover thickness, compressive strength, and 
the ratio between thickness of concrete cover and diam-
eter of rebars (Sarker, 2011). Several parameters affect-
ing the bond performance such as compressive strength, 
concrete cover, rebars characteristics (mainly diameter 
and surface texture), confinement conditions and the 
bond stress–slip relationship were studied (Zhang et al., 
2016). Most of studies are primarily related to investi-
gate the bond behavior in ambient temperature. Insuf-
ficient attention has been directed towards the bond 
performance between AAC and rebars at high tempera-
ture (Chen et al., 2018).

Reinforcement bar bond characteristics in con-
crete exposed to elevated temperatures are crucial for 
maintaining structural integrity in case of fire. A well-
established research works investigated the bond char-
acteristics between the reinforcement bars and OPC 
concrete (Alharbi et  al., 2021b). Some recent studies 
(Morley & Royles, 1980; Yin et  al., 2011) revealed that 
the strength of concrete reduced as the temperature 
increased; at elevated temperature, the degradation of 
concrete–rebar bond strength was significant.

H.Y. Zhang et  al. investigated the bond behavior of 
metakaolin–fly ash based AAC with different-diameter 
rebars, using pull-out tests, after exposure to elevated 
temperatures up to 700  °C. It was shown that the AAC 
did not demonstrate significant deterioration in bond 
strength except when exposed to elevated temperature 
above 300 °C. Also, AAC showed similar or better bond 
characteristics than OPC concrete with similar compres-
sive strength (Zhang et al., 2018). Jiang et al. performed 

a laboratory study to investigate the steel rebar-to-paste 
bond behavior for both AAC and OPC concrete after 
exposing to very high temperatures (up to 1200 °C). This 
study revealed that AAC retained some residual bond 
strength even after exposing to 1200 °C, While OPC con-
crete completely disintegrated at 800 °C, which indicated 
to the excellent bonding performance of AAC at the 
extreme temperatures (Jiang et al., 2020). Ramagiri et al. 
reported that increasing the slag content in the blended 
binder (fly ash + slag) of AAC increased the bond 
strength of AAC at a constant activator modulus. Also, 
it was reported that the AAC mix that contains 30% slag 
in the blended binder exhibited a superior high-temper-
ature performance in terms of residual compressive and 
bond strength (Ramagiri & De Maeijer, 2022). Paswan 
et al. investigated the bond behavior at elevated tempera-
ture up to 800 °C between rebars and fly ash–slag based 
AAC as a function of compressive strength, rebar diame-
ter, embedment length and concrete cover by considering 
the obtained ultimate bond stress, slip, and load at failure 
compared with those of control cement concrete. It was 
concluded that the bond performance of AAC was effec-
tive compared with that of the cement concrete. Also, 
it was reported that the bond strength of AAC exposed 
to elevated temperatures increased with an increase of 
temperature up to 400  °C, due to the curing of low-cal-
cium fly ash, and then decreased. The decrease in bond 
strength was about 69% at 800 °C (Paswan et al., 2020).

Many researches proved the superiority of AAC in the 
mechanical properties and durability compared with 
the conventional concrete. However, limited studies 
have been investigated the bond performance between 
AAC and steel rebars, and most of them were conducted 
using the well-known pull-out test on lollipop specimens 
because of its simplicity, while rare studies have used the 
beam-end specimens which are more realistic and accu-
rate, because of the relative difficulty of its test setup. 
Moreover, researches investigating the bond behav-
ior of AAC after exposure to elevated temperatures are 
still limited especially for those that used slag only as a 
binder. So, this paper concerned with investigating the 
bond behavior between AASC, using binder totally from 
slag, and steel rebars considering the rebar diameter and 
development length-to-diameter ratio using the beam-
end technique, which is consider the most effective tech-
nique, at both ambient and elevated temperatures.

2  Experimental Program
2.1  Materials
GGBFS was used as the binder in this study. The chemi-
cal composition of GGBFS is presented in Table  1. 
The coarse aggregate was natural crushed limestone 
with nominal maximum size of 10  mm, and the fine 
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aggregate (natural sand) was with fineness modulus of 
2.77. The alkaline activator was a mixture solution of 
sodium silicate and sodium hydroxide. The solution of 
sodium hydroxide solution was prepared by dissolv-
ing flakes of pure sodium hydroxide in potable water, 
while the sodium silicate solution was obtained from 
a local supplier. The used sodium hydroxide flakes had 
a chemical composition of 60.25%  Na2O and 39.75% 
 H2O, while the chemical composition of the used 
sodium silicate solution was 31.00%  SiO2, 11.98%  Na2O, 
and 57.00%  H2O. The rebars used to investigate the 

bond behavior were steel ribbed bars with properties 
as shown in Table 2. The mix proportions for the used 
AASC and its characteristics are shown in Table 3.

2.2  Test Specimens
Nine beam-end specimens with of 200  mm in wide, 
300  mm in height, and 600  mm in length were investi-
gated. Both of tension and compression reinforcement 
was two deformed rebars with diameter of 12 mm posi-
tioned in the beam corners, while the shear reinforce-
ment was stirrups with 8 mm in diameter with spacing of 
125  mm. The configuration of test specimen was deter-
mined to fulfill the requirements of the ASTM A 944 
(2005). Fig.  1 illustrates the configuration and presents 
the dimensions of the used specimens. One tested steel 
rebar was placed in the tension side for each test speci-
men; the bottom concrete cover of the tested rebar was 
50 mm, while the side concrete cover was 100 mm, and 
these covers were kept constants for all tested specimens. 
A plastic tube was used to make the first 50 mm distance 
from the tested rebar, measured from the loaded end 

Table 1 Chemical compositions of GGBFS (mass %)

Component SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O TiO2 Mn2O3

GGBFS 41.66 13.96 1.49 34.53 5.53 0.97 0.49 0.58 0.35

Table 2 Characteristics of used steel rebars

Bars 
diameter 
(mm)

Yield 
strength 
(MPa)

Tensile 
strength 
(MPa)

Elongation 
percentage 
(%)

Ribs 
height 
(mm)

Ribs 
spacing 
(mm)

12 473 644 25.2 1.1 7.8

16 540 690 21.3 1.1 10.3

22 572 745 20.8 1.6 13.0

Table 3 Mix proportions and properties of the used AASC

a SS =  Na2SiO3, bSH = NaOH, cF.A. = fine aggregate, dC.A. = coarse aggregate.

GGBFS SSa SHb Add. water F.A.c C.A.d Compressive strength (MPa) Slump (mm)

450 131 41 112 547 1093 44.0 230

Fig. 1 Configuration and dimensions of beam‑end test specimen
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concrete surface, debonded. This distance is called the 
lead length which should be achieved to avoid the pos-
sible conical failure. The tested bonded length, which 
calculated according to the investigated bond length to 
diameter (L/d)  ratio, followed the lead length (50  mm 
distance), and then the remaining part of the tested rebar 
was debonded using also plastic tube as shown in Fig. 1.

2.3  Preparation and Testing of Specimens
Mixing criteria implemented in this work for the alkali-
activated concrete initiated with mixing the dry materi-
als, GGBFS and aggregates, in the pan of mixer for about 
1 min. Then, the alkaline activator was added to the dry 
mixture and then mixing for around 4 min until the mix-
ture became homogeneous. The preparation process of 
the alkaline activator was by mixing the sodium hydrox-
ide flakes, sodium silicate solution and potable water for 
around 1  h before adding it to the dry mixture until its 
average temperature was about 30 °C. Before casting, the 
cage of reinforcement bars was positioned in the mold 
and then the tested steel rebar oriented horizontally in its 
proper position as presented in Fig. 2. Plastic tubes and 
sticky tape were used to make the bond breakers for the 
tested rebars to achieve the required bonded length for 
testing as illustrated in Fig.  3. The test specimens were 
demolded after 24  h from casting, and then kept in the 
laboratory at the ambient temperature (25 ± 2  °C) and 
relative humidity (50 ± 5%) until the testing date.

For the specimens that were exposed to elevated tem-
peratures, their apparent parts of their tested rebars were 
painted with an anti-rust material to keep it from being 
corroded by elevated temperatures. After painting the 
rebars, they were covered with a heat-insulation mate-
rial (ceramic fiber fabrics) to prevent the rapid transfer of 
heat to the embedded part of rebars inside the concrete 
and also so that its tensile strength would not be affected 
by the elevated temperatures. Fig. 4 shows the beam-end 
specimens after preparing the rebars.

The configuration of the test setup of specimens is 
illustrated in Figs.  5 and 6. The reaction steel plate was 
positioned at the specimen bottom (compression side) 

to achieve uniform distribution for the induced stresses. 
The applied tension force acting on the tested steel rebar 
generated by using a hydraulic jack with capacity of 
300  kN. The test specimen was fixed in its position by 
anchoring it to the reaction steel frame using two steel 
plates with four steel threaded bars and nuts. The values 
of applied tension loads were measured by using a special 
load cell positioned between the hydraulic jack and test 
specimen which connected to specimen by a threaded 
part in the outer part of the tested rebar and connected 
to the hydraulic jack using an external threaded bar. Slip-
page that occurred in the free end of the tested steel rebar 
was recorded by using LDVT.

The bond strength, τu , was determined based on the 
obtained ultimate load, Pu , resisted by the tested steel 
rebar by using Eq. (1) (Castel & Foster, 2015):

where τu = bond strength (MPa); Ø = diameter of tested 
rebar (mm); L = bonded length of tested rebar (mm); 
Pu = ultimate load resisted by the tested rebar (pull-out) 
(N).

The axial tensile stress, σu , in the tested rebar corre-
sponding to its ultimate bond strength, was determined 
by using Eq. (2):

where σu = tensile stress in the tested rebar (MPa); 
Ø = diameter of tested rebar (mm); Pu = ultimate load 
resisted by the tested rebar (pull-out) (N).

2.4  Test Matrix
In this study, pulling-out testing was performed on 
beam-end specimens to investigate the bond behavior. 
The beam-end technique was selected because of its 
simulation to the actual bond between the rebars and 

(1)τu =
Pu

π · ∅ · L
,

(2)σu =
Pu

π .∅2/4
,

Fig. 2 Shape of  reinforcement cage and  tested rebar in the mold

Bonded LengthPlastic tube

Sticky Tape

Plastic tube

Fig. 3 Shape of tested rebars before placing in the mold
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concrete in the reinforced concrete elements that sub-
jected to flexure (Shamseldein et al., 2018).

Taguchi method was applied to design the experi-
ments to reduce the number of tested beams while pre-
serving the possibility of interpreting and analyzing the 
test results for the studied different factors and levels. 
Three factors related to bond behavior with three lev-
els for each factor were considered. Table  4 presents 
the parameters and levels that employed in the Taguchi 

method. By using Taguchi design and according to L9 
array, nine beams were obtained as shown in Table 5.

The code of specimens presented in Table  5 refers 
to the studied parameters. The first part describes the 
rebar diameter, the second part describes the exposure 
condition, and the last part describes the development 
length-to-diameter ratio. For example, specimen (D12-
T300-6) refers to a specimen reinforced by 12-mm-diam-
eter rebar, exposed to elevated temperature of 300  °C, 
and the applied development length-to-diameter ratio is 
6.

2.5  Heating Regime
After 28  days of curing, the prepared test specimens 
were exposed to elevated temperatures in an electric fur-
nace with a temperature capacity of 1200  °C as shown 
in Fig. 7. Six specimens were exposed to two degrees of 
temperature (300 and 600 °C), three specimens for each 
temperature degree. The heating rate of the furnace was 
5  °C/min. After reaching the required temperature, the 
heated specimens kept at this temperature in the furnace 
for a period of 1.5 h to achieve the temperature homog-
enization in the specimens. Then, the heated specimens 
were cooled naturally by opening the ventilation hole in 
the furnace to ambient temperature. Fig.  8 presents the 
time–temperature regime of all targeted elevated tem-
peratures that applied on the test specimens.

3  Results and Discussion
To determine the concrete compressive strength of the 
tested beams, core specimens were extracted from the 
beams after testing from a location far from the failure 
positions, using a core cutter device as shown in Fig. 9. 
Table  6 presents the test results for the compressive 
strength of tested specimens before and after exposing to 
the elevated temperatures. Moreover, Table 7 shows the 
results of all test specimens. Ultimate bond strength, τu , 
free-end slippage that is corresponding to the obtained 
ultimate bond stress, Su, maximum tension stress induced 
in the tested steel rebar that is corresponding to the ulti-
mate bond strength, σu , as a percentage of the maximum 
tensile strength of the tested steel rebar, fu, the ascending 
branch slope, Ka = τu/Su, and the observed modes of fail-
ure are summarized in Table 7.

3.1  Elevated Temperatures Damage
The damage caused by applying the elevated tempera-
tures were evaluated for all heated test specimens by 
performing the unit weight, compressive strength and 
ultrasonic-pulse velocity tests on specimens extracted 
from the beams after testing. Table 8 presents the results 
of all carried-out tests. Percentage of unit weight loss, 
compressive strength loss and ultrasonic-pulse velocity 

Fig. 4 Preparation of beam‑end specimens before exposure to the 
elevated temperature
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loss were calculated and plotted as presented in Fig. 10. 
Also, the heated specimens were inspected visually after 
removing them from the furnace, where tiny cracks scat-
tered on the surface with slight thermal spalling for the 
specimens’ edges were observed in all heated specimens.

3.2  Mode of Failure and Cracking Pattern
Cracking patterns resulting at failure for all test speci-
mens are presented in Fig.  11. The failure mode of all 
beams was splitting mode failure, where a single crack 
started at the loaded end of specimen and propagated in 
the longitudinal direction of the tested rebar towards the 

specimen free end, then this longitudinal single crack was 
branched out into two cracks towards the edges of the 
tested specimen at the end of the bonded length of the 
tested rebar. It can be said that a typical cracking pattern 
and failure mode were obtained for the tested specimens 
are as illustrated in Fig.  12. The obtained crack pattern 
was similar to that of OPC concrete under pull-out load 
which agreed with what found by Sarker (2011). There 
was no significant difference observed in the obtained 
cracking pattern and failure mode due to the elevated 
temperature exposure. This can be attributed to the high 
stability, which means no significant changes occurred, of 
the AAC products, which are generated due to the hydra-
tion and polymerization of its binder, in the presence 
of alkaline activator, at elevated temperatures. Also, the 
obtained porous micro-structure in AAC makes it have 
better performance at elevated temperatures (Jiang et al., 
2020).

Fig. 5 Schematic for the beam‑end specimen test setup

Fig. 6 Setup of beam‑end specimen test

Table 4 Parameters and levels employed in Taguchi design

Parameters Level 1 Level 2 Level 3

Bar diameter (mm) 12 16 22

Temperature (°C) 25 300 600

Bond length to diameter (L/d) 4 6 8

Table 5 Test matrix

Ser Specimens 
designation

Bar 
diameter 
(mm)

Temperature 
(°C)

Bond length to 
diameter (L/d)

1 D12‑T25‑4 12 25 4

2 D12‑T300‑6 300 6

3 D12‑T600‑8 600 8

4 D16‑T25‑8 16 25 8

5 D16‑T300‑4 300 4

6 D16‑T600‑6 600 6

7 D22‑T25‑6 22 25 6

8 D22‑T300‑8 300 8

9 D22‑T600‑4 600 4
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3.3  Bond Stress–Slip Relationships
Fig.  13 presents the relationships between bond stress 
and slippage that occurred at the free end of all tested 
specimens. These relationships were separated into three 
groups as illustrated in Figs. 14, 15 and 16 according to 
the rebar diameter to clarify the relationships and the 
differences between them. The bond stress–free-end 
slip relationships of “D12-T25-4”, “D12-T300-6” and 
“D12-T600-8” specimens are presented in Fig. 14, while 
the bond stress–free-end slip relationships for “D16-
T25-8”, “D16-T300-4” and “D16-T600-6” specimens are 
presented in Fig.  15, and the bond stress–free-end slip 

Fig. 7 The used electric furnace

Fig. 8 Applied time–temperature regime

Fig. 9 Extracting cylindrical specimens and testing them in compression
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relationships for “D22-T25-6”, “D22-T300-8” and “D22-
T600-4” specimens are presented in Fig. 16.

As shown in Table 7 and Figs. 14, 15 and 16, the bond 
stress–slip relationships of the specimens that were 
exposed to 25  °C (ambient temperature) demonstrated 
a steep ascending branch at the low values of slippage, 
then followed by a soft increasing up to the maximum 
bond stress. These specimens had achieved the highest 
values for the ascending branch slope. For the specimens 
exposed to elevated temperatures, their bond stress–slip 
relationships showed less steep ascending branches up 
to the maximum bond stress than those of specimens 
at ambient temperature. This result is clearer from the 
values of ascending branch slopes reported in Table  7. 
It can be seen that by increasing the temperature degree 
of exposure, the value of ascending branch slope was 
decreased. Also, it was noticed that the exposure to ele-
vated temperatures caused a significant reduction in the 
maximum bond stress, and an increase in the free-end 
slippage that was corresponding to the maximum bond 
stress. Moreover, test specimens that were exposed to 
elevated temperatures achieved the lowest slopes for the 
ascending branch.

To surmount the difficulty of investigating how the 
different parameters affect the values of τu and Su, pro-
gram of Minitab was employed to determine the signal-
to-noise (S/N) ratio for all considered parameters affect 
both of τu and Su as shown in Figs. 17 and 18, respec-
tively. Also, ANOVA approach was used by employing 
the program of Qualitek-4 to calculate the percentage 
of participation and optimum level of all considered 

Table 6 Test results of compressive strength

a Represents the residual compressive strength after exposure to elevated 
temperature as a percentage from the compressive strength at ambient 
temperature.

Ser Exposure 
temperature (°C)

Compressive strength

results (MPa) Referring to 
the ambient 
(%)a

1 Ambient (25) 34.9 100

2 300 28.7 82

3 600 18.6 53

Table 7 Test results of beam‑end specimens

τu = the ultimate bond strength ( τu =
Pu
π∅L

 );  Su = free-end slippage that is corresponding to the obtained ultimate bond strength; σu = tensile stress in the tested steel 
rebar that is corresponding to the obtained ultimate bond strength ( σu =

Pu

π∅2/4
 ); fu = maximum tensile strength of the tested steel rebar; Ka = the ascending branch 

slope of bond stress–slip curve (Ka = τu/Su).

Ser Code τu (MPa) Su (mm) σu/fu (%) Ka (N/mm3) Failure mode

1 D12‑T25‑4 15.01 0.2111 37.30 71.10 Splitting

2 D12‑T300‑6 13.46 0.4491 50.15 29.97

3 D12‑T600‑8 10.53 0.7030 52.30 14.98

4 D16‑T25‑8 15.56 0.1603 72.17 97.07

5 D16‑T300‑4 10.97 0.5745 25.44 19.09

6 D16‑T600‑6 8.54 0.8550 29.70 9.99

7 D22‑T25‑6 14.01 0.3570 45.13 39.24

8 D22‑T300‑8 11.29 0.5709 48.49 19.78

9 D22‑T600‑4 6.98 1.1145 14.99 6.26

Table 8 Tests results for the evaluation of beam‑end specimens

Ser Exposure 
temperature 
(°C)

Unit weight 
(kg/m3)

Compressive 
strength (MPa)

Pulse 
velocity 
(m/s)

1 25 2432 34.9 4620

2 300 2365 28.7 3714

3 600 2264 18.6 1188

Fig. 10 Percentage of unit weight loss, compressive strength loss 
and ultrasonic‑pulse velocity loss for all extracted specimens
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Fig. 11 Modes of failure and cracking patterns for all tested beam‑end specimens
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parameters on both of τu and Su as given in Tables  9 
and 10, respectively.

It can be observed from Fig.  17 and Table  9 that the 
exposure temperature was the most significant param-
eter that affects the value of “τu”. The participation per-
centage was 83.27% and the optimum level was 25  °C. 
This means that by increasing the exposure tempera-
ture, the maximum bond stress was decreased, which 
can be attributed to the obtained decrease in the com-
pressive strength and tensile strength after exposing to 
the elevated temperatures. The degradation in τu when 
exposing to elevated temperature above 300 °C was more 
significant. The reduction in S/N ratio at temperatures of 

300 °C and 600 °C from the ambient temperature of 25 °C 
was 8.32% and 20.40%, respectively. This is agreed with 
what reported by H.Y. Zhang et al. (2018) (Zhang et al., 
2018).

The bar diameter is the second significant param-
eter with a participation percentage of 10.76% and 
the 12  mm  bar diameter (the lowest diameter) was 
the optimum level, as presented in Table 9. This dem-
onstrates that the bond behavior of small-diameter 
rebars was better than that of large-diameter rebars 
as shown in Fig.  17. The improvement in the bond 
behavior occurred due to more favorable ratio between 

Fig. 12 Typical cracking pattern of the tested beam‑end specimens

Fig. 13 Bond stress–slip relationships of all test specimens Fig. 14 Bond stress–slip relationships of the case of 12‑mm‑diameter 
rebars
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bond surface area and cross-sectional area of rebars 
(Bamonte et al., 2004; Wu & Zhao, 2013).

The L/d ratio was achieved the lowest value for the 
percentage of participation, 4.65%, with optimum level 
of 8. This indicates that by increasing the L/d ratio, the 
τu was increased as shown in Fig.  17. The increase of 
τu due to increasing the L/d ratio was not significant. 
The increase in S/N ratio for L/d of 6 was 4.80% higher 
than that for L/d of 4, while the increase in S/N ratio 
for L/d of 8 was 6.76% higher than that for L/d of 4. 
This indicates that increasing the L/d ratio does not 
increase τu significantly which agreed with what found 
by Eligehausen et  al., (1982), Xu (1990) and Harajli 
et al., (2004).

From Fig.  18, it can be observed that the Su decreased 
by increasing of both rebar diameter and exposure tem-
perature and increased by increasing of the L/d ratio. As 
reported in Table 10, the most significant factor on Su was 
the exposure temperature, then rebar diameter and finally 
the L/d ratio with percentages of participations of 82.81%, 

10.74% and 4.85%, and with optimum levels of 25  °C, 
12 mm and 8, respectively.

4  Analytical Study
4.1  Available Models
There is a need to verify the bond behavior of AASC using 
the available bond models used for OPC concrete to see 
how accurate these models predict the bond behavior of 
AASC. Two common models were utilized to predict the 
bond behavior for the conventional concrete with rebars 
were used in this analytical study. The first one was in the 
CEB-FIP model (Comite EURO—International du Beton, 
1990) while the second one was the model that proposed 
by Maree 2014 (Farghal Maree & Hilal Riad, 2014). These 
two models were used to compare the experimental results 
of bond behavior with those obtained analytically from the 
aforementioned two models.

In CEB-FIP, the relationship between bond stress and 
slippage is defined by a set of equations, which are based on 
several parameters: concrete compressive strength, rebar 
diameter, type of reinforcement (smooth or deformed), 
confinement conditions and bond conditions. The ana-
lytical relationship of bond stress–slip in accordance with 
CEB-FIP model is presented in Fig. 19.

In Fig.  19, the first branch, ascending, which is a non-
linear part, represents the phase in which the ribs, on the 
surface of rebars, penetrate and interlock through the mor-
tar matrix of concrete, characterized by microcracking and 
crushing locally. Maximum slip of this first branch (ascend-
ing) is considered the characteristic slip which denoted 
as  S1. The constant horizontal part, which occurs in case 
of confined concrete only, is referring to the shearing and 
advanced crushing of concrete between the ribs of rebar. 
The maximum slip of this part is denoted as  S2. This con-
stant part is followed by descending branch which is refer-
ring to the decrease in the bond resistance because of the 
induced cracks occurred in the longitudinal direction of 
rebars due to splitting. The maximum slip of this descend-
ing branch is denoted as  S3. The lower horizontal part 
refers to the residue of bond strength, which is retained due 
to minimal transverse reinforcement, while maintaining a 
particular integrity intact degree.

For monotonic loading, bond stress between concrete 
and rebar can be determined as a function of the relative 
displacement, S, according to Eqs. (3) to (6). The values of 
parameters in these equations are defined in Table 11:

(3)τ = τmax

(

S

S1

)α

, 0 ≤ S ≤ S1,

(4)τ = τmax, S1 < S ≤ S2,

Fig. 15 Bond stress–slip relationships of the case of 16‑mm‑diameter 
rebars

Fig. 16 Bond stress–slip relationships of the case of 22‑mm‑diameter 
rebars
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Maree 2014 investigated the bond characteristics for 
two types of conventional concrete (Normal Weight 
Concrete “NWC” and Light Weight Concrete “LWC”) 
with steel rebars using pull-out test for both beam-
end and lollipop specimens. This study investigated 
the bond of straight, deformed, and unanchored steel 
rebars with LWC in flexural elements with investigat-
ing the validity of both available design codes and bond 
models to predict the bond behavior for LWC. The 
main parameters considered in this study were con-
crete type (NWC and LWC), diameter of rebars (12, 16 

(5)

τ = τmax −
(

τmax − τf
)

[

S − S2

S3 − S2

]

, S2 < S ≤ S3,

(6)τ = τf , S3 < S.

and 22 mm) and bonded length-to-diameter ratio (2, 3 
and 4).

At the end of this study, Maree proposed modifica-
tions in the main parameters of the CEB-FIP model to 
consider the effect of both concrete type and bar diam-
eter on the bond stress–slippage relationship. These 
modifications were in characteristic slippages ( S1 ) and 
( S2) and bond strength ( τmax ) as presented in Table 11.

4.2  Comparative Study
Comparison between the two aforementioned models 
with the obtained experimental results was conducted. 
The results of this comparison are presented in Figs. 20, 
21 and 22. It was observed that the CEB-FIP model dem-
onstrated underestimated values for the bond strength 
and revealed bond–slip relationships with steeper 
descending branches than experimental results at both 

Fig. 17 The significance of main parameters affecting “τu” (Minitab program)
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ambient and elevated temperature. However, it was 
observed that the value of bond strength obtained from 
CEB-FIP model approached the experimental results 
with increasing the exposure temperature. The model 
proposed by Maree 2014 gave over-estimated values for 
the bond strength and gave bond–slip relationships with 
steeper descending branches than the obtained experi-
mental results at ambient and elevated temperature.

This comparison showed a high deviation between the 
experimental results with those obtained analytically 
from the aforementioned two models. This means that, 
these models are of low accuracy to predict the bond 
behavior of AASC which attributed to the difference 
between the conventional concrete and the AASC in 
many aspects such as components, hydration products, 
manufacturing technique and general behavior. That is 

Fig. 18 The significance of main parameters affecting “Su” (Minitab program)

Table 9 Percentage of participation and optimum level for all 
considered parameters on τu

Parameter Bar diameter 
(mm)

Temperature (°C) L/d

Percentage of partici‑
pation (%)

10.76 83.27 4.65

Optimum level 12 25 8

Table 10 Percentage of participation and optimum level for all 
considered parameters on Su

Parameter Bar diameter 
(mm)

Temperature (°C) L/d

Percentage of partici‑
pation (%)

10.74 82.81 4.85

Optimum level 12 25 8
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why a modified model is proposed to predict AASC bond 
behavior with a higher accuracy.

4.3  Proposed Modified Model
The main target of this analytical study was to introduce a 
proposed modified model in order to predict a complete 
bond behavior between ambient cured AASC and steel 
rebars more accurate than the aforementioned models 
used for conventional concrete.

To improve the prediction level of AASC bond behav-
ior, modifications were proposed on the main parameters 
of CEB-FIP model based on the technique of best fitting 
for the obtained experimental results, these modifica-
tions are shown in Table 12. These modifications were in 
the bond strength ( τmax ) and the characteristic slippage 
( S3 ). The bond strength increased from 2

√

f ′c  to 2.5
√

f ′c  , 
as the AASC showed bond strength higher than the con-
ventional concrete as reported in the literature and as 
obtained from the experimental results of this research 
work. The characteristic slippage ( S3 ) modified from 
1.00  mm to the clear rib spacing of rebars to make the 
descending branch less steep.

Comparison between the results of proposed model, 
and both of the obtained experimental results and the 
results obtained analytically from the aforementioned 

two models was conducted at both ambient temperature 
(25  °C) and elevated temperatures of 300  °C and 600  °C 
as shown in Figs. 23, 24 and 25, respectively. It was noted 
that the proposed modified model matched well the 
experimental results at ambient temperature (25 °C). This 
can be attributed to that the criteria used in the study to 
modify the model were based on the findings of previ-
ous studies conducted on AAC samples at ambient tem-
perature, due to the limited studies found for elevated 
temperatures. Also, it was observed that the proposed 
modified model gave over-estimated bond–slip relation-
ships for all specimens that were exposed to elevated 
temperatures except 12-mm-diameter rebars specimens, 
which the proposed modified model matched well their 
ascending branches up to the maximum bond strength 
and then gave over-estimated descending branches. This 
means that there is a need for further investigation to 
reach a modification factor for the main parameters of 
the bond–slip relationship, especially for τmax and  S3, to 
be used in the case of exposure to elevated temperatures. 
After considering the results obtained from this study, 
this factor is likely to be a reduction factor. Also, it is rec-
ommended for this modification factor to be linked to 
the used rebars diameter.

5  Conclusions
Both of experimental and analytical investigation for 
the bond behavior between AASC and steel rebars after 
exposing to elevated temperatures was presented and dis-
cussed. Based on analyzing and discussing the obtained 
results, the following conclusions can be drawn:

• Failure mode for all beam-end specimens was 
by splitting. There was no significant difference 
observed in the obtained cracking pattern or failure 
mode due to exposing to the elevated temperatures.

• The degradation level of bond strength after expos-
ing to elevated temperatures above 300 °C was sig-
nificant. Generally, bond strength decreased, and 

Fig. 19 Bond stress–slip relationship (CEB‑FIP model) (Comite 
EURO—International du Beton, 1990)

Table 11 Defining parameters of the bond stress–slippage 
relationship

*∅ = rebar diameter (mm)

**f ′c = concrete compressive strength (MPa)

Parameters CEB-FIP Maree 2014

S1(mm) 0.60 0.11× e
0.054∅

S2(mm) 0.60 25

S3(mm) 1.00 1.00

α 0.40 0.40

τmax(MPa) 2
√

f ′c 10.4× ∅−0.35
√

f ′c

τf (MPa) 0.15τmax 0.15τmax

Table 12 Modified defining parameters of the bond stress–
slippage relationship

Parameters CEB-FIP Maree 2014 Proposed model

S1(mm) 0.60 0.11× e
0.054∅ 0.60

S2(mm) 0.60 25 0.60

S3(mm) 1.00 1.00 Clear rib spacing

α 0.40 0.40 0.40

τmax(MPa) 2
√

f ′c 10.4× ∅−0.35
√

f ′c 2.5
√

f ′c

τf (MPa) 0.15τmax 0.15τmax 0.15τmax
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Fig. 20 Analytical versus experimental bond–slip curves (specimens of 12‑mm‑diameter rebars)
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Fig. 21 Analytical versus experimental bond–slip curves (specimens of 16‑mm‑diameter rebars)
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Fig. 22 Analytical versus experimental bond–slip curves (specimens of 22‑mm‑diameter rebars)
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Fig. 23 Proposed analytical versus experimental bond–slip relationships (ambient temperature of 25 °C)
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Fig. 24 Proposed analytical versus experimental bond–slip relationships (elevated temperature of 300 °C)
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Fig. 25 Proposed analytical versus experimental bond–slip relationships (elevated temperature of 600 °C)



Page 21 of 23Amer et al. Int J Concr Struct Mater           (2023) 17:36  

corresponding slippage increased due to the ele-
vated temperatures exposure.

• Based on the obtained signal-to-noise (S/N) ratios, 
participation percentages and optimum levels of 
each considered parameters, the bond strength 
decreased with increasing the rebar diameter and 
increased slightly with increasing the L/d ratio.

• The CEB-FIP model provided more conservative 
values for bond strength compared to the experi-
mental results which increase the safety level when 
estimating bond strength in design purposes.

• The proposed modified model achieved a higher 
correlation with the obtained experimental results 
than CEB-FIP model at ambient temperature.
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