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Abstract 

Concrete compressive strength is usually determined 28 days after casting via crushing of samples. However, 
the design strength may not be achieved after this time‑consuming and tedious process. While the use of machine 
learning (ML) and other computational intelligence methods have become increasingly common in recent years, 
findings from pertinent literatures show that the gradient‑boosting ensemble models mostly outperform compara‑
tive methods while also allowing interpretable model. Contrary to comparison with other model types that has domi‑
nated existing studies, this study centres on a comprehensive comparative analysis of the performance of four widely 
used gradient‑boosting ensemble implementations [namely, gradient‑boosting regressor, light gradient‑boosting 
model (LightGBM), extreme gradient boosting (XGBoost), and CatBoost] for estimation of the compressive strength 
of quaternary blend concrete. Given components of cement, Blast Furnace Slag (GGBS), Fly Ash, water, superplas‑
ticizer, coarse aggregate, and fine aggregate in addition to the age of each concrete mixture as input features, 
the performance of each model based on R2, RMSE, MAPE and MAE across varying training–test ratios generally 
show a decreasing trend in model performance as test partition increases. Overall, the test results showed that Cat‑
Boost outperformed the other models with R2, RMSE, MAE and MAPE values of 0.9838, 2.0709, 1.5966 and 0.0629, 
respectively, with further statistical analysis showing the significance of these results. Although the age of each 
concrete mixture was found to be the most important input feature for all four boosting models, sensitivity analysis 
of each model shows that the compressive strength of the mixtures does increase significantly after 100 days. Finally, 
a comparison of the performance with results from different ML‑based methods in pertinent literature further shows 
the superiority of CatBoost over reported the methods.
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1 Introduction
Climate change and global warming have accelerated 
due to increasing emissions of greenhouse gases (GHG). 
This has led to serious environmental problems, such as 
drought, flood, heat waves etc. (Pandey & Kumar, 2022). 
The production of concrete used in the construction 
industry remains one of the largest sources of GHG, and 
accounts for about 50% of global emissions (Allujami 
et  al., 2022a, 2022b; Di Filippo et  al., 2019). GHG from 
concrete production is expected to increase as demand 
for concrete keeps surging due to human development. 
The production of Portland cement (PC) produces vast 
amount of  CO2 through a process called calcination 
of Calcium oxide (CaO). This calcination accounts for 
around 7% of the global  CO2 emissions to the atmos-
phere (Benhelal et al., 2019). This emission is expected to 
increase as the annual consumption of cement would rise 
from its present 4000 million tonnes to about 6000 mil-
lion tonnes by the year 2060 (Moreira & Arrieta, 2019). 
These figures show the need for sustainable and more 
environmental-friendly materials to replace cement par-
tially or fully, not only to meet the growing demand, but 
to reduce emissions of  CO2 (Ebid et  al., 2022; Mikulčić 
et al., 2016).

In view of the abovementioned problems, industrial 
wastes have been used in production of concrete. This 
approach results in a drastic decrease in PC used in con-
struction as well as prevents environmental degradation 
caused by disposal of these hazardous industrial waste 
(Agrawal et al., 2021; Hashim & Tantray, 2021). The use 
of industrial wastes can reduce about 80% of GHG emis-
sions of normal concrete. The commonly used industrial 
wastes that act as supplementary cementitious material 
in concrete include fly ash (FA), ground granulated blast 
furnace slag (GGBS) and silica fume (SF) (Hammad et al., 
2021; Hashmi et  al., 2021; Okashah et  al., 2020). They 
have been used as partial replacements for cement when 
producing improved and more sustainable concrete. This 
practice is favoured by the availability of large quantity 
of these industrial wastes as about 300 million tonnes of 
FA is produced annually with only 25% of this production 
being used up for concrete production (Dan et al., 2021). 
Similarly, annual global production of GGBS is around 
280 million tonnes with less than 10% of this produc-
tion being utilised in concrete production (Kamath et al., 
2021).

In the production of concrete for structural usage, an 
in depth and accurate knowledge of the properties are 
required (Ebid & Deifalla, 2022; Salem & Deifalla, 2022; 
Song et al., 2021). Compressive strength, being the most 
important property can be improved by partial replace-
ment of cement with these cementitious industrial wastes 
in the accurate proportions. The compressive strength 

is generally ascertained by testing (crushing) concrete 
specimens (cubes or cylinders), usually after 28 days of 
casting (Allujami et  al., 2022a, 2022b; Ebid & Deifalla, 
2021). However, this method of obtaining the compres-
sive strength of concrete is time consuming, tedious and 
expensive (Badra et al., 2022; Silva et al., 2020). In addi-
tion, the desired strengths are often not attained, thus 
being less effective (Deifalla & Salem, 2022; Salami et al., 
2022). This has led researchers to the use of machine 
learning (ML) and artificial intelligence (AI) algorithms 
to obtain the mechanical properties of concrete. The use 
of AI and ML techniques, such as decision tree (DT), 
artificial neural network (ANN), support vector machine 
(SVM), and extreme learning machine (ELM), in estimat-
ing (predicting) concrete properties takes into account 
certain parameters of the concrete (such as concrete mix 
proportions and concrete age) and its constituents to 
achieve reliable estimations (Gupta et al., 2006; Mustapha 
et al., 2022).

Several ML approaches have been proposed over the 
years for accurate estimation of compressive strength 
of concrete. For example, Cook et al. (2019) presented a 
hybrid ML model that combined firefly algorithm (FFA) 
with random forests (RF) to predict the compressive 
strength of concrete. A correlation between the input 
variables and output was developed by training the 
hybrid (RF-FFA) model with two different categories of 
data sets. They concluded that the hybrid RF-FFA model 
performed better than standalone ML models, such as 
SVM, RF, M5Prime model-tree algorithm and multilayer 
perceptron–ANN (MLP–ANN). Shariati et  al. (2020) 
presented a novel hybrid ML approach using grey wolf 
optimizer to predict the compressive strength of concrete 
with partial replacement of cement. The results were 
compared to those obtained via an adaptive neuro-fuzzy 
inference system (ANFIS), extreme learning machine 
(ELM), ANN, support vector regression (SVR) with radial 
basis function (RBF) kernel (SVR–RBF), and another 
SVR with a polynomial function kernel (SVR-Poly).

Dao et  al., (2020a, 2020b) applied an optimized con-
ventional ANN to predict the compressive strength of 
foamed concrete. Dry density was included as an input 
parameter, while the volume of foam was ignored in their 
study. The results showed a high correlation  R2 of 0.97 for 
the models. The authors referred to ANN as a black-box 
model, since it provides no practical information about 
the predicted model, and citing the vast hidden neu-
rons as major impediments to developing an empirical 
relation between input and output parameters. Abellán-
García (2020) presented an ANN model with four layers 
to predict the compressive strength of ultra-high-perfor-
mance concrete (UHPC). A total of 927 data samples and 
18 mixture design variables were used as input. While 
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impressive results were similarly reported, the proposed 
approach shares a common shortcoming with other 
aforementioned approaches in that the knowledge of the 
contribution of each input feature in the model predic-
tions of the concrete mixtures is lacking. Besides, the 
results reported in most of these studies are still open to 
further improvement.

The quest for more accurate estimation of compressive 
strength of HPC has inspired the use of nature inspired 
classifiers, such as genetic expression programming 
(GEP). For instance, Ullah et  al. (2022) applied a data-
base of 191 data points to develop a relationship between 
the mix design parameters and  compressive strength of 
foamed concrete  using gene expression programming 
(GEP). The input variables were  cement content, sand 
content, water to  cement ratio, foam volume, while the 
output parameters were the dry density and compres-
sive strength. The results showed that 95% of the pre-
dicted compressive strength had error values that were 
less than 2%. Recently, Shah et  al. (2022) presented a 
comparative analysis using different ML techniques to 
predict the compressive strength of sugarcane bagasse 
ash (SCBA) concrete. The ML techniques included ran-
dom forest regression (RFR), GEP and SVM. The results 
were compared to experimental testing. The input vari-
ables were water–cement ratio, cement content, SCBA 
dosage (SCBA%), the quantity of fine aggregate and 
coarse aggregate. The results showed that the  R2  of all 
the ML techniques were all above 0.85, and the RRMSE 
and performance index (PI) were less than 10% and 0.2%, 
respectively, with GEP producing the most accurate 
results across the compared methods. While GEP allow 
generation of simple mathematical equations for built 
models, it can be computationally expensive. Besides, 
its performance has long been shown to be similar or 
lower than other existing genetic programming meth-
ods (Oltean & Grosan, 2003). In fact, recent studies on 
compressive strength estimation such as (Fakharian et al., 
2023; Salami et  al., 2022; Song et  al., 2021) have shown 
via empirical results that ML methods such as ANN and 
classifier ensembles outperform GEP across several eval-
uation metrics.

Boosting methods are a class of ensemble machine 
learning methods that have found wide application in 
many real-life domains with impressive results (Babajide 
Mustapha & Saeed, 2016). They generally enhance learn-
ing by merging the predictions of several simple base 
learners into a composite whole (Tanha et al., 2020). Dif-
ferent implementations of boosting ensemble have also 
been employed by several researchers for compressive 
strength estimation. For example, Kaloop et  al. (2020) 
investigated the use of a multivariate adaptive regression 
splines (MARS) model to extract the optimum inputs 

to use for compressive strength design of HPC. The 
extracted features were fed to a gradient-tree-boosting 
machine (GBM). While improved results over compara-
tive methods were reported, the authors also found con-
crete age to be the most influential input parameter. Feng 
et al. (2020) applied an adaptive boosting algorithm (Ada-
boost) to predict the compressive strength of concrete 
given curing time and mixture contents as input vari-
ables. Using tenfold cross validation method for model 
validation, the authors reported notable improvement in 
performance over classical methods, such as ANN and 
SVM. Nguyen-Sy et al. (2020) demonstrated an accurate 
prediction of the compressive strength of concrete using 
an extreme gradient-boosting (XGBoost) model. Sensi-
tivity analysis was carried out to optimize the numbers of 
estimators by varying them from 100 to 1000 while keep-
ing the default values of other hyperparameters constant. 
An increase in the number of estimators was found to 
generally lead to increased model accuracy.

In another related study, Cui et  al. (2021) proposed a 
novel XGBoost prediction model based on grey rela-
tion analysis (GRA) for the estimation of compressive 
strength of concrete containing slag and metakaolin. 
Empirical findings showed that XGBoost outperformed 
ANN and its genetic algorithm hybridized variant (GA-
ANN). Similar study by Nguyen et  al. (2021)  concluded 
that XGBoost and gradient-boosting regressor (GBR) 
models outperformed the likes of SVM and MLP for pre-
diction of compressive strength and  tensile strength of 
HPC.

Apart from XGBoost, there are other gradient-boosting 
implementations that have found application in con-
crete property estimation. For instance, Alabdullah et al. 
(2022) applied LightGBM to estimate the values of Rapid 
Chloride Penetration Test (RCPT) in a metakaolin-based 
high strength concrete. Using 201 experimental sam-
ples, input variables such as binder content, concrete 
age, water–binder ratio, metakaolin percentage, and 
content of fine and coarse aggregates were used to train 
a LightGBM model which yielded results with  R2 value 
of 0.9738. Likewise, Mahjoubi et  al. (2022) investigated 
the use of LightGBM in the estimation of the compres-
sive strength of UHPC with similarly high prediction 
accuracy. In another pertinent study, de-Prado-Gil et al. 
(2022) applied a CatBoost (CBT) model to predict the 
compressive strength of a self-compacting concrete. The 
study was conducted using 381 data samples. Experimen-
tal findings show that the cement content had the highest 
influence on model output.

There has also been a notable growth in the applica-
tion of deep learning methods for compressive strength 
estimation in recent years. Jang et  al. (Jang et  al., 2019) 
proposed image-based compressive strength estimation 
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of concrete using three deep neural network (DNN) 
architectures, namely, ResNet, GoogLeNet, and AlexNet. 
Images of the surfaces of specially produced specimens 
were captured with a portable digital microscope and 
used to train each model for compressive strength esti-
mation. Empirical results show that the DNN models 
outperformed the fully connected ANNs with ResNet 
showing the best performance. In addition, a deep 
learning-based estimation of compressive strength of 
fiber-reinforced concrete at elevated temperatures was 
proposed in (Chen et al., 2021). Using the concrete mix, 
heating profile, and fiber properties as model inputs, 
three variations of convolutional neural networks (CNN) 
models were shown to outperform several models that 
include SVR, ANN and Adaboost. In addition, deep 
learning models such as CNN have been hybridized with 
evolutionary algorithms, such as GA for improved per-
formance (Ranjbar et  al., 2022). More recently, Hoang 
(2023) proposed a deep learning-based estimation of the 
compressive strength of rice husk ash-blended concrete 
using an asymmetric loss function. Results from this 
study showed better performance than ANN and multi-
variate adaptive regression splines.

The pursuit of accurate estimation of compressive 
strength of concrete has inspired myriad of research 
studies over the years, each seeking to achieve this goal 
via some machine learning methods. However, find-
ings as indicated from the foregoing show that the gra-
dient-boosting ensembles and DNN-based approaches 
stand out, mostly performing better than popular meth-
ods, such as SVR, classical ANN, GEP, KNN and their 
hybrid variants amongst others. The gradient ensembles 
methods are particularly the focus of this study, given 
their high accuracy and interpretability. Besides, a com-
prehensive comparative study on gradient-boosting 
algorithms for prediction of compressive strength of qua-
ternary blend concrete remains lacking. Such study has 
the potentials of guiding field engineers on the choice of 
computational tools for accurate and reliable estimation 
of properties when designing concrete.

Thus, this study aims to compare the performance 
of four gradient-boosting algorithms in estimating the 
compressive strength of quaternary blend concrete. The 
algorithms are gradient-boosting regressor (GBR), light 
gradient-boosting model (LGBM), eXtreme gradient 
boosting (XGB), and CatBoost (CBT). In the training 
phase, hyperparameter optimization of each algorithm 
is first carried out using fivefold cross validation to 
ensure optimal model performance. Twenty optimal 
models were built, five for each gradient-boosting algo-
rithm, using different training–test splits to obtain best 
performing model in terms of mean squared error. The 
input variable are the proportions of cement, ground 

granulated blast furnace slag (GGBS), fly ash (FA), water, 
superplasticizer, coarse aggregate, fine aggregate, and 
concrete age. The performance of each of the final model 
is evaluated using four popularly used statistical meas-
ures, namely, root mean squared error (RMSE), mean 
absolute error (MAE), mean absolute percentage error 
(MAPE) and coefficient of determination  (R2). A sensitiv-
ity analysis is carried out to understand the importance 
and contribution of the input/predictor variables. Finally, 
a comparison of the obtained results with results in pre-
vious literatures (other methods).

The key contributions of this study are highlighted as 
follows:

• Prediction of the compressive strength of quaternary 
blend concrete using CBT.

• A comprehensive comparative analysis of gradient-
boosting algorithms (GBR, CBT, XGB and LGBM) 
for the estimation of quaternary blend concrete.

• An intuitive insight into the importance and contri-
bution of input features for the estimation of quater-
nary blend concrete.

• Comparison of performance of gradient-boosting 
algorithms with results from previous studies.

2  Computational Methods
The gradient-boosting ensembles considered in this 
research are gradient-boosting regressor (GBR), light 
gradient-boosting model (LGBM), eXtreme gradient 
boosting (XGB), and CatBoost (CBT). These models have 
been selected based on their performance in pertinent 
studies relating to estimation of mechanical properties 
of concrete. The advantage model interpretability offers 
makes it especially useful for field engineers, allowing 
them to understand the impact of input parameters with-
out undergoing tedious and time-consuming laboratory 
experiments. Each of the selected methods are detailed in 
what follows.

2.1  Gradient‑Boosting Regressor
Gradient-boosted decision trees (GBDT) have been 
widely used in machine learning. However, gradient-
boosting regressor (GBR) (Friedman, 2002) is arguably 
the earliest well-known implementation of the idea of 
gradient descent boosting of decision trees that optimizes 
an arbitrary differentiable loss function via stagewise 
additive approach in model building. Every iteration of 
the model building process involves fitting a classification 
and regression tree (CART) on the negative gradient (i.e., 
the residual error between the estimated and the target 
output) of an arbitrary loss function (Friedman, 2002). 
Gradient boosting of decision trees has been shown to be 
robust to overfitting while producing highly competitive 
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results especially while modelling noisy data. In addition, 
it is also interpretable as it offers relative importance 
of input features used in model building. The two main 
hyperparameters for optimal Gradient boosting are the 
number of boosting stages and the shrinkage parameter, 
also known as the learning rate (Friedman, 2001).

In general, in GBR, the model is initialized with a con-
stant value γ (A tree with just one leaf node) that mini-
mizes the loss over all the samples as in the following 
equation:

This is followed by several iterations of negative gradi-
ent computation of the loss function L and its subsequent 
usage to fit a decision tree and addition of a new model to 
the ensemble as in the following equation:

where v is the shrinkage parameter used to control over-
fitting. Although, GBR is used for regression problem 
in the present study, it is also suitable for classification 
problems. Extensive details of the theoretical foundation 
of gradient-boosting regressor can be found in (Fried-
man, 2001, 2002).

2.2  XGBoost
Another gradient-boosting implementation that is con-
sidered in this study is the extreme gradient-boosting 
(XGBoost) algorithm. XGBoost is an optimized variant 
of gradient boosting that combines the predictions of 
several “weak” classification and regression tree (CART) 
learners to develop a “strong” learner using additive 
training strategies (Chen et  al., 2015). XGBoost is espe-
cially known for preventing overfitting efficiently through 
a simplified objective function that combines the loss 
and regularization terms. The regularized optimization 
objective is as in the following equation:

where l is the loss function that measures the difference 
between the experimental, ym , and the estimated ŷm out-
put; � is the regularization term given as the following 
equation:

where T  and w are the number of leaves and the score 
on each leaf, respectively; γ and � are constants for con-
trolling the degree of regularization. Although used for 
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regression problem in this study, XGBoost is suitable for 
all types of supervised learning problems. See Chen et al. 
(2015) for detailed background on this algorithm.

2.3  LightGBM
Another novel implementation of gradient-boosted 
decision tree (GBDT) that has been proposed to 
address the scalability and efficiency problem of its tra-
ditional counterpart is LightGBM (LGBM) (Ke et  al., 
2017). Unlike the traditional GBDT which entails the 
time-consuming process of scanning all data samples 
to estimate the information gain of all possible split 
points for each tree node, LGBM proposes two novel 
techniques called gradient-based one-side sampling 
(GOSS) and exclusive feature bundling (EFB). In the 
GOSS, only samples with large gradients are considered 
important and used in the estimation of information 
gain for split point selection. Thus, a significant propor-
tion of data samples are excluded when estimating the 
information with little or no impact on the accuracy of 
estimated gain. On the other hand, the EFB technique 
carries out the NP-hard problem of bundling mutually 
exclusive features (i.e., they rarely take nonzero val-
ues simultaneously) to reduce the number of features 
with negligible impact on the split point determina-
tion accuracy. Although used for regression problem in 
this study, LGBM is suitable for all supervised learning 
problems. Further details on LGBM can be found in 
(Ke et al., 2017).

2.4  CatBoost
Similar to the aforestated GBDT algorithms, CatBoost 
(CBT) is also a machine learning algorithm that lev-
erages gradient boosting on decision trees. CBT is 
a unique GBDT implementation that is known for its 
categorical feature handling capability (Dorogush et al., 
2018). The two main algorithmic advances introduced 
in CBT are the implementation of ordered boosting 
which is a permutation-driven alternative to the clas-
sic algorithm, and an innovative algorithm for process-
ing categorical features. Both techniques were created 
to fight a prediction shift caused by a special kind of 
target leakage present in all currently existing imple-
mentations of gradient-boosting algorithms. Likewise, 
CBT has the advantage of using a new schema for leaf 
values calculation when selecting tree structures, which 
greatly alleviates the problem of overfitting. Although 
used for regression problem in this study, CBT is suit-
able for all supervised learning problems. Extensive 
details on CBT can be found in (Dorogush et al., 2018).
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3  Methodology
3.1  Data Description
The quaternary concrete data applied in this study are 
experimental results obtained from (Lichman, 2013). The 
compressive strength which is the most important prop-
erty of concrete should be accurately and reliably mod-
elled for a quaternary concrete. Thus, the data has been 
carefully selected to cover the compressive strength for a 
wide range of days, ranging from 1 to 365 days. To the 
best of our knowledge, these data are the largest and most 
widely used data set for compressive strength estimation. 
Hence, its popularity makes the results of this experi-
ment comparable to a wide range of previous studies. The 
variables used as input in the modelling are age (days), 
portions of cement (Kg/m3), GGBS (Kg/m3), FA (Kg/m3), 
water (Kg/m3), super plasticizer (Kg/m3), fine aggregate 
(kg/m3) and coarse aggregate (Kg/m3). Fig.  1 presents a 
visual distribution of each feature. The numerical val-
ues of the basic statistics of the features of the 1030 data 

samples are also presented in Table 1. The statistics of the 
data set show the mean, standard deviation, minimum 
value, lower quartile, middle quartile (median), upper 
quartile, and maximum value to indicate consistency and 
suitability for use in this study.

In addition, a correlation analysis of all the input vari-
ables to the output, the compressive strength, is also pre-
sented to understand how changes in each input variable 
bring about corresponding changes in output. Correla-
tion Coefficient (CC) was used to assess the sensitivity 
of each component (feature) of the concrete mixture to 
the compressive strength (MPa) (Mustapha et  al., 2022; 
Salami et al., 2021). From Fig. 2, it can be observed that 
the input variables (cement, GGBS, water, superplas-
ticizer, coarse aggregate, fine aggregate and age) have 
varying degrees of correlation with the output. Four of 
the input variables (cement, GGBS, superplasticizer and 
age) are positively correlated with the output, whereas 
the remaining four (fly ash, water, coarse aggregate and 

Fig. 1 Boxplots of distribution of compressive strength and input features of data sets

Table 1 Descriptive statistics of variables used in modelling

Stat Compressive 
strength 
(MPa)

Cement 
(comp. 1) 
(kg/m3)

GGBS 
(comp. 2) 
(kg/m3)

Fly Ash
(comp. 3) (kg/
m3)

Water 
(comp. 4) 
(kg/m3)

SP
(comp. 5) (kg/
m3)

Coarse 
Aggregate
(comp. 6) (kg/
m3)

Fine 
Aggregate
(comp. 7) (kg/
m3)

Age (day)

Count 1030 1030 1030 1030 1030 1030 1030 1030 1030

Mean 35.81796 281.1679 73.89583 54.18835 181.5673 6.20466 972.9189 773.5805 45.66

Std. 16.70574 104.5064 86.27934 63.997 21.35422 5.973841 77.75395 80.17598 63.17

Min. 2.33 102 0 0 121.8 0 801 594 1

25% 23.71 192.375 0 0 164.9 0 932 730.95 7

50% 34.445 272.9 22 0 185 6.4 968 779.5 28

75% 46.135 350 142.95 118.3 192 10.2 1029.4 824 56

Max. 82.6 540 359.4 200.1 247 32.2 1145 992.6 365
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fine aggregate) are inversely correlated. Positive correla-
tion here implies that an increase or decrease in these 
input variables result in corresponding increment or dec-
rement in the compressive strength, respectively. On the 
other hand, increase in the inversely correlated variables 
leads to decrease in the compressive strength of concrete 
and vice versa.

3.2  Experimental Setup
The steps involved in the experimental setup of this 
research is depicted in Fig.  3. Following the statistical 
description of each variable of the data set (see Sect. 3.1) 
is data normalization. This is a common pre-processing 
stage in most machine learning pipeline to avoid numeri-
cal overflow while keeping the input variables within a 
uniform range. Due care has been taken to split the data 
into training and test partitions before data normaliza-
tion to avoid data leakage (O’Neil & Schutt, 2013). All 
input variables were normalized, such that the values are 
within the range of -1 and 1.

Cross validation is often used to assess the generaliza-
tion capability of models in ML by splitting a given data 
set into two parts, where a portion is used for model 
training and the other is used to test how well the trained 
model is likely to generalise to an unseen data. However, 
due to varying ratios of training–test splits that have 
been reported in the literature, the performance of GBR, 
XGB, LGBM and CBT with optimized hyperparameters 
are initially examined across five training–test ratios 

that include 90:10, 85:15, 80:20, 75:25 and 70:30. The 
experimental results of this process are presented and 
discussed in Sect. 5.2. The hyperparameter optimization 
for each model is carried out using only the training split 
of the data set to ensure that each model does not have 
access to the test partition prior to testing as in real-life 
application of machine learning. Each of the gradient-
boosting algorithms considered in this study has a wide 
range of tuneable hyperparameters for optimal model 
performance; however, only a few have been selected 
for optimization. An exhaustive search of every possible 
combination of values within a specified range for each 
selected hyperparameters is used to train each model 
using fivefold cross validation. In other words, the train-
ing data are further divided into 5 equal partitions, each 
of which is, respectively, used to test the performance of 
a model trained with the remaining four partitions using 
a combination of hyperparameters at a time. The combi-
nation of hyperparameters that produce the best (lowest) 
average mean squared error over this process is deemed 
the optimal model parameters that is used to train the 
model on the entire training set before testing with the 
test partition that was initially set aside. As reported by 
Nguyen-Sy et  al. (2020), increasing the number of esti-
mators is similarly found to generally result in improved 
model performance. Hence, a search space of 10 to 1000 
estimators is considered in this study.

Table 2 shows the hyperparameter search space and the 
optimal combination of hyperparameters for the 90:10 
training–test split for all models. The model trained with 
optimal parameters is then evaluated using the evalu-
ation metrics described in Sect.  3.3. All experiments 
were performed using python programming language. 
The Scikitlearn (Pedregosa et  al., 2011) implementation 
of gradient-boosting regressor was used for GBR model, 
whereas the official python implementations of XGB, 
LGBM and CBT were similarly used for the respective 
model implementations.

3.3  Evaluation Metrics
To evaluate the performance of the developed machine 
learning models in this study, widely accepted statistical 
metrics such as the coefficient of determination (R2), root 
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mean squared error (RMSE), mean absolute error (MAE) 
and mean absolute percentage error (MAPE) were 
applied. The mathematical formulation for each of these 
metrics are presented in Eqs. (5)–(8):

where ym is the experimental output, ŷm is the model 
estimated output, y is the mean of the experimental 
output, ŷ is the mean of the estimated output, n is the 
number of samples. MAPE also has ε which stands for 
an arbitrarily positive small constant to avoid division 
by zero when ym is zero. For each of MAPE, RMSE and 
MAE, the lower the value, the better the model. On the 
contrary, achieving an R2 value close to 1 is the goal of the 
learning algorithm, i.e., the closer the R2 value to 1, the 
better. A baseline model which always predict the mean 
of the experimental output y will have an R2 of value 0, 
whereas a worse model than the baseline will produce a 
negative R2 value.

In addition to the results based on these evaluation 
metrics, a ranking test using Friedman’s test (Friedman, 
1940) is also carried out to test the null hypothesis that the 
means of the results of the gradient-boosting ensemble 

(5)R2 = 1−

n∑
m

(ym − ŷm)
2

n∑
m

(ym − ŷ)2

(6)RMSE =

√√√√1

n

n∑

m=1

(ym − ŷm)

(7)MAE =
1

n

n∑

m=1

∣∣ym − ŷm
∣∣

(8)MAPE =
1

n

n∑

m=1

∣∣ym − ŷm
∣∣

max
(
ε,

∣∣ym
∣∣)

methods are the same at significance level of 0.05. If this 
null hypothesis is rejected, Holms’s test (Holm, 1979) is 
performed as a post-hoc analysis of the pairwise com-
parison of the performance these methods is carried to 
establish if one is significantly better. The null hypothesis 
of the Holms’s test is that the mean of the results of a pair 
of groups is equal. All statistical analysis were carried out 
on the STAC web platform for statistical analysis (Rod-
ríguez-Fdez et al., 2015).

4  Results and Discussion
4.1  Model Performance Across Varying Training–Test Splits
As hinted in Sect.  3.2, the lack of a globally accepted 
training–test split ratio inspired a preliminary study on 
five popular training–test ratios that include 90:10, 85:15, 
80:20, 75:25 and 70:30 (e.g., 75:25 implies that 75% of the 
data set is used for training, while the remaining 25% is 
used for testing). For each training–test ratio and learn-
ing algorithm, hyperparameter optimization is first car-
ried out as described in Sect.  4.2 before model training 
and testing for estimation of compressive strength. The 
training and test performance of GBR, XGB, LGBM 
and CBT for the different training–test splits in terms 
of RMSE, R2, MAPE and MAE is presented in Fig.  4. 
As expected, the training performance of the model for 
the different training–test splits is generally better than 
their respective test performance across the evaluation 
metrics. However, being the true measure of the perfor-
mance of the models, the test performances are relatively 
impressive given the marginal difference between the 
training and test scores. The general trend from Fig.  4 
shows that as the test fraction of the training–test ratio 
increases, the models’ respective performance tends to 
decrease across the evaluation metrics. Moreover, unlike 
the remaining training–test ratios, 90:10 consistently 
produced the best performance across the evaluation 
metrics for each learning algorithm; corroborating what 
was reported in (Salami et  al., 2021). Hence, the result 
of the 90:10 training–test ratio for each of GBR, XGB, 
LGBM and CBT is selected and discussed in detail in the 
next section. The mean of the training and test scores for 
each model (with standard deviation) over the different 
ratios are also presented for each evaluation metric in 
Table A of the supplementary material.

4.2  Performance Comparison of Best Performing Model 
for Each Algorithm

Table 3 presents the training and test scores based on the 
evaluation metrics for compressive strength estimation 
using the ML methods under study. The best result for 
each metric is highlighted in bold. In terms of  R2 which 
measures how well the models approximate the experi-
mental compressive strengths of each concrete mixture, 

Table 2 Optimal hyperparameters for gradient‑boosted models

Hyperparameter Search space Optimal parameters

GBR LGBM XGB CBT

No of estimators 10–1000 520 780 890 980

Learning rate 0.01–0.5 0.12 0.13 0.12 0.12

Max features 0.5–1 0.7 1 0.7 Default

Subsample 0.7–1 0.8 Default 0.8 Default

Max depth (depth) 1–10 5 5 5 5

Num leaves 0–10 – 10 Default Default

alpha (L1 Reg) 0.01–2.0 – 0.14 0.6 –

Lambda (L2 Reg) 0.01–2.0 – Default Default 1
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the training and test performances of GBR (0.9950 and 
0.9731), XGB (0.9909 and 0.9764), LGBM (0.989 and 
0.9745) and CBT (0.993 and 0.9838) are, respectively, very 
impressive given the small generalization gaps of 0.0219, 
0.0145, 0.0145, and 0.0092 between the training and test 
performances of the respective models. This implies that 
despite fitting the training data to near perfection, the 
models are still able to generalize their training perfor-
mance quite well. However, comparatively, the test  R2 
score of 0.9838 achieved by CBT is better than 0.9731, 
0.9764 and 0.9745 produced by GBR, XGB and LGBM, 
respectively. This indicates a performance improvement 
of 1.1%, 0.75% and 0.95% over the trio, respectively.

A comparison of the experimental and estimated 
compressive strengths by the gradient-boosted ML 

models are presented in Fig.  5. Fig.  5 shows the scat-
ter plots of the estimated compressive strengths plotted 
against experimental ones with the respective line of 
best fit for the training and test phases of each of GBR, 
CBT, XGB and LGBM models. The plots intuitively 
illustrate how correlated the model estimations are to 
the experimental values. The corresponding R2 (i.e., 
coefficient of determination) value on each plot sum-
marises its performance with a single score. In general, 
the plots show that despite producing a more corre-
lated training estimations of the compressive strength, 
GBR produced the least correlated estimates in the test 
phase. The test compressive strength estimations of 
CBT are most correlated with the experimental values, 
followed by the XGB then LGBM.

Fig. 4 Training and test performance of ML models with different training–test splits

Table 3 Training and testing performance of the models (↑ Higher is better, ↓ lower is better)

Training Test

↑R2 ↓RMSE
(MPa)

↓MAE
(MPa)

↓MAPE ↑R2 ↓RMSE
(MPa)

↓MAE
(MPa)

↓MAPE

XGB 0.9909 1.6016 0.9246 0.0330 0.9764 2.4972 1.9032 0.0744

LGBM 0.9890 1.7578 1.0599 0.0392 0.9745 2.5963 2.0067 0.0788

CBT 0.9930 1.4045 0.7218 0.0256 0.9838 2.0709 1.5966 0.0629
GBR 0.9950 1.1826 0.4259 0.0148 0.9731 2.6642 1.9013 0.0717



Page 10 of 24Mustapha et al. Int J Concr Struct Mater           (2024) 18:20 

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

GBR Training

Ex
pe

rim
en

ta
l C

om
pr

es
siv

e 
St

re
ng

th
 (M

Pa
)

Es�mated Compressive Strength (MPa)

R2 = 0.9950

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

GBR Test

Es�mated Compressive Strength (MPa)

R2 = 0.9731

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

CBT Training

Ex
pe

rim
en

ta
l C

om
pr

es
siv

e 
St

re
ng

th
 (M

Pa
)

Es�mated Compressive Strength (MPa)

R2 = 0.9930

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

CBT Test

Es�mated Compressive Strength (MPa)

R2 = 0.9838

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

LGBM Training

Ex
pe

rim
en

ta
l C

om
pr

es
siv

e 
St

re
ng

th
 (M

Pa
)

Es�mated Compressive Strength (MPa)

R2 = 0.9890

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

LGBM Test

Es�mated Compressive Strength (MPa)

R2 = 0.9745

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

XGB Training

Ex
pe

rim
en

ta
l C

om
pr

es
siv

e 
St

re
ng

th
 (M

Pa
)

Es�mated Compressive Strength (MPa)

R2 = 0.9909

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

XGB Test

Es�mated Compressive Strength (MPa)

R2 = 0.9764

Fig. 5 Comparison of experimental and estimated compressive strength for the training and test phases of each model



Page 11 of 24Mustapha et al. Int J Concr Struct Mater           (2024) 18:20  

Also presented in Table  3 for each model are the 
respective training and test performances in terms of 
RMSE, MAE and MAPE. It is worthy of note that unlike 
 R2, these statistical evaluation measures seek to approxi-
mate the errors between the experimental values and 
model estimations as described in Sect.  4.3. Based on 
these metrics, the respective training and test perfor-
mances of GBR (RMSE = 1.1826 MPa and 2.6642 MPa; 
MAE = 0.4259 MPa and 1.9013 MPa; MAPE = 0.0148 
and 0.0717), XGB (RMSE = 1.6016 MPa and 2.4972 MPa; 
MAE = 0.9246 MPa and 1.9032 MPa; MAPE = 0.033 and 
0.0744), LGBM (RMSE = 1.7578 MPa and 2.5963 MPa; 
MAE = 1.0599 MPa and 2.0067 MPa; MAPE = 0.0392 and 
0.0788) and CBT (RMSE = 1.4045 MPa and 2.0709 MPa; 
MAE = 0.7218 MPa and 1.5966 MPa; MAPE = 0.0256 and 
0.0629) are very impressive given the respective generali-
zation gaps of 1.4816 MPa, 0.8956 MPa, 0.8385 MPa and 
0.6664 MPa in terms of RMSE, 1.4754 MPa, 0.9786 MPa, 
0.9468 MPa and 0.8748 MPa in terms of MAE as well as 
0.0569, 0.0414, 0.0396 and 0.0373 in terms of MAPE for 
the respective models. Amongst these models, the GBR 
model produced the largest differences between the train-
ing and test scores, hence the least generalization despite 
fitting the training data best. On the other hand, the CBT 
model generalizes best while also producing the best test 
performance across the different metrics. Although, the 
GBR model fits the training data best, in terms of test 
performance which is the true measure of model perfor-
mance, CBT produced a superior performance to GBR, 
XGB and LGBM across all the error-based evaluation 
metrics with a performance improvement ranging from 
17% to 22%, 16% to 20.4% and 12% to 20% in terms of 
RMSE, MAE and MAPE, respectively.

Presented in Figs.  6, 7, 8 and 9 are the superimposed 
line plots of experimental and estimated compres-
sive strengths for the training and test phases (a and b) 
alongside the corresponding error plots (c and d) for 
each of the considered gradient-boosting models. The 
errors for the training and test phases of each model are 
obtained by subtracting the estimated value of compres-
sive strength for each data sample from its correspond-
ing experimental value in the data sets. Since the aim of 
the model is to estimate the actual compressive strength 
as closely as possible, the lesser the deviation of the error 
plot from zero, the better.

It can be observed from the test error plots (Fig.  6d) 
that the CBT model shows the least deviation as it only 
deviates by error more than an |5| at only two occasions 
(sample indexes 66 and 87) compared to seven, five and 
three cases in GBR (sample indexes 35, 64, 66, 69, 71, 
75 and 86 as in Fig.  9d), XGB (sample indexes 17, 35, 
58, 66 and 69, as shown in Fig.  7d) and LGBM (sample 
indexes 35, 66 and 75 as in Fig. 8d) models, respectively. 

It is noteworthy that while all the models, respectively, 
exceeded |5| error mark on sample index 66, the GBR 
model notably deviated by |11| on this sample index; 
making it the least performing model in this regard.

4.3  Average Performance of Models
To further ensure that the performance of the gradient-
boosted machine learning algorithms compared in this 
study is not by chance, the same experiment was repeated 
100 times for each of the models using the same set of 
optimal hyperparameters presented in Table 2. The origi-
nal data was repeatedly split into training–test partitions 
for different repetitions of the experiment using different 
random seeds to ensure that different sets of training and 
test samples were used each time over the whole process. 
The mean and standard deviation of the training and test 
performances of each of GBR, XGB, LGBM and CBT 
over the 100 repetitions are presented in Fig. 10 for each 
statistical evaluation measures. As expected, and hinted 
earlier, the average training performance of each model is 
generally better than the corresponding average test per-
formance across the evaluation metrics with GBR mostly 
performing best in this regard followed by CBT.

Similarly, the training performance shows minimal 
deviation from their respective means compared to 
the test performance. In terms of the test performance, 
CBT  (R2 = 0.9506, RMSE = 3.6051, MAE = 2.2462, 
MAPE = 0.0774) generally produced the best average 
performance based on all evaluation metrics, whereas 
GBR (R2 = 0.9444, RMSE = 3.8406, MAE = 2.4247, 
MAPE = 0.0836) ranks lowest in all but MAE and MAPE, 
where it shows comparable or slightly better performance 
than LGBM (R2 = 0.9467, RMSE = 3.7644, MAE = 2.4386, 
MAPE = 0.0862) and XGB  (R2 = 0.9468, RMSE = 3.7638, 
MAE = 2.4371, MAPE = 0.0854) on average. Although, 
XGB marginally outperform LGBM on the specific result 
presented in Table  3, the average performance of XGB 
and LGBM are mostly similar with XGB slightly perform-
ing better over the hundred repetitions. Overall, CBT 
ranks best on the average, followed by XGB, LGBM, then 
GBR across all the evaluation measures.

4.4  Statistical Analysis of Results
In addition, a statistical analysis of the obtained results 
in terms of  R2 and RMSE is presented here. Using the 
test results from 100 repetitions of experiments from 
the preceding section, the null hypothesis of the Fried-
man’s test is rejected given p values of 0.00000 (less than 
significance level of 0.05) for both  R2 and RMSE results, 
respectively. The Friedman’s ranking tests for both  R2 and 
RMSE rank the gradient boosting ensembles algorithms 
similarly in descending order as follows, CBT > XGB 
> LGBM > GBR. While this ranking signifies that CBT 



Page 12 of 24Mustapha et al. Int J Concr Struct Mater           (2024) 18:20 

0

20

40

60

80

100

1 30 59 88 11
7

14
6

17
5

20
4

23
3

26
2

29
1

32
0

34
9

37
8

40
7

43
6

46
5

49
4

52
3

55
2

58
1

61
0

63
9

66
8

69
7

72
6

75
5

78
4

81
3

84
2

87
1

90
0

)aP
M(

htgnertS
evisserp

moC

Sample Index

CBT Training
Experimental Es�mated

(a)

0

20

40

60

80

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

)aP
M(

htgnertS
evisserp

moC

Sample Index

CBT Test
Experimental Es�mated

(b)

-30
-25
-20
-15
-10

-5
0
5

10
15

1 30 59 88 11
7

14
6

17
5

20
4

23
3

26
2

29
1

32
0

34
9

37
8

40
7

43
6

46
5

49
4

52
3

55
2

58
1

61
0

63
9

66
8

69
7

72
6

75
5

78
4

81
3

84
2

87
1

90
0

Sample Index

CBT Training Error
RMSE=1.4045 MPa; MAE= 0.7218 MPa; MAPE= 0.0256

(c)

-15

-10

-5

0

5

10

15

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101
Sample Index

CBT Test Error
RMSE= 2.0709 MPa; MAE= 1.5966 MPa; MAPE = 0.0629

(d)

Fig. 6 Superimposed line plots of experimental and estimated compressive strength for a training and b test phases and corresponding error plots 
over the c training and d test data for CatBoost
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Fig. 7 Superimposed line plots of experimental and estimated compressive strength for a training and b test phases and corresponding error plots 
over the c training and d test data for LightGBM
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ranks highest amongst the algorithms, how significant 
the difference between each pair of algorithms remains 
unclear. Hence, the need for pairwise post hoc analysis 

using Holm’s test. The Holm’s test results for  R2 and 
RMSE are presented in Table 3. It can be observed that 
the null hypothesis at significance level of 0.05 is rejected 
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Fig. 8 Superimposed line plots of experimental and estimated compressive strength for a training and b test phases and corresponding error plots 
over the c training and d test data for XGBoost
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Fig. 9 Superimposed line plots of experimental and estimated compressive strength for a training and b test phases and corresponding error plots 
over the c training and d test data for gradient‑boosting regressor



Page 16 of 24Mustapha et al. Int J Concr Struct Mater           (2024) 18:20 

for all pairwise combination except LGBM vs XGB for 
both evaluation metrics. This shows that, although XGB 
ranks higher than LGBM, the difference between them 
is not statistically significant. Conversely, CBT is signifi-
cantly better than any other methods (Table 4).

4.5  Feature Importance
Being able to understand or interpret the decision or the 
cause of the decision a machine learning model makes is 
integral to improved human understanding of the data, 
the model and relationship between them. The quest for 
this has paved way for a whole new active area of research 
known as interpretable machine learning (Murdoch et al., 
2019). Similarly, this section seeks to provide insight into 
the decision of each of the considered machine learning 
models in this study relative to the data set. While ear-
lier works on compressive strength estimation have rarely 
explored this line of research, there has been a notable 
increase in studies exploring this line of research. Some 
of which have investigated the importance of input fea-
tures in the prediction of mechanical properties of per-
vious concrete using extreme gradient boosting and 
support vector regression as well as Adaboost (Feng 
et al., 2020; Güçlüer et al., 2021; Mustapha et al., 2022). In 
this study, the feature importance function which can be 

called on each of the fitted models of the Python imple-
mentations of CatBoost, LightGBM, XGBoost and gradi-
ent-boosting regressor is used to get the contribution of 
each input feature to the respective models.

Figs. 11, 12, 13 and 14, respectively, present a ranking 
of the input features for CBT, LGBM, XGB and GBR in 

Fig. 10 Mean (± Standard Deviation) performance of gradient‑boosted models over 100 repetitions of experiments

Table 4 Results of pairwise post‑hoc analysis using Holm’s test

Comparison Statistic Adjusted p value Null hypothesis

R2

GBR vs CBT 8.43469 0.00000 Rejected
LGBM vs CBT 5.90936 0.00000 Rejected
XGB vs CBT 5.69224 0.00000 Rejected
XGB vs GBR 2.74245 0.01829 Rejected
LGBM vs GBR 2.52533 0.02312 Rejected
LGBM vs XGB 0.21712 0.82811 Accepted

RMSE

GBR vs CBT 8.63897 0.00000 Rejected
LGBM vs CBT 6.07266 0.00000 Rejected
XGB vs CBT 5.92649 0.00000 Rejected
XGB vs GBR 2.71248 0.02003 Rejected
LGBM vs GBR 2.56631 0.02056 Rejected
LGBM vs XGB 0.14617 0.88378 Accepted
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descending order of importance. There is consensus 
amongst all the models that the top three most impor-
tant feature to the estimation of compressive strength are 
the Age (in days) of each of the concrete mixtures fol-
lowed by the quantity of cement (in kg/m3), then water 
(in kg/m3). This confirms what has been reported in 
earlier studies that the compressive strength of concrete 
increases with time (Abdulkareem et al., 2019; Sharmila 
& Dhinakaran, 2016). At the bottom end of the feature 
importance ranking is coarse aggregate (in kg/m3) with 
the least relevance to the predictive performance of XGB 
and LGBM, whereas the fly ash (in kg/m3) component 
of each mixture has the least contribution to the predic-
tive decision of the GBR and CBT models. These findings 
further corroborate what has been reported in pertinent 

works relating the importance of age, cement as well as 
water quantity in the estimation of compressive strength 
of concrete (Cakiroglu et  al., 2023; Feng et  al., 2020; 
Güçlüer et al., 2021).

4.6  Sensitivity Analysis
A sensitivity analysis of all the input variables employed 
in estimating the compressive strength is presented here 
to understand how changes in each input variable bring 
about corresponding changes in the estimated model 
outputs. It is noteworthy that while the correlation analy-
sis presented in Fig. 2 can be viewed as a form of sensi-
tivity analysis, it only represents the static relationship 
between each input variable and the output irrespective 
of the model. Here, the relationship between the input 

Fig. 11 Feature importance of CatBoost model

Fig. 12 Feature importance of LightGBM model



Page 18 of 24Mustapha et al. Int J Concr Struct Mater           (2024) 18:20 

variables and the estimated output from the perspective 
of each model is presented. This is achieved by showing 
the marginal effect each feature has on the predicted out-
come of GBR, CBT, LGBM and XGB models with the aid 
of partial dependence plots (PDP) (Hastie et  al., 2009). 
The PDP is a global method that considers all instances 
and gives a statement about the global relationship of a 
feature with the predicted outcome. In the current study, 
each gradient-boosting ensemble model has been fitted 
to estimate the compressive strength of concrete mix-
tures and PDP is used to visualize the relationships each 
model has learnt as presented in Fig.  15a–d for CBT, 
GBR, LGBM and XGB, respectively.

It is interesting to note that the relationship between 
each input feature and the estimated output (compressive 

strength) exhibit similar trend across the gradient-
boosting models. For instance, the relationship between 
cement quantity and the estimated compressive strength 
is linear for all models, with increasing cement quantity 
yielding corresponding increase in compressive strength 
across the models. Similar pattern can be observed in 
relation to the age of the concrete mixtures albeit the 
compressive strength plateaus after about 100 days, indi-
cating no significant increase in the compressive strength 
of the mixtures after this period. While the range of train-
ing compressive strength values (which is2.33–82.6 MPa 
in this study) used for model building in highly influen-
tial to model estimations, representative works such as 
(Abdulkareem et al., 2019; Sharmila & Dhinakaran, 2016) 
alluded to slower increase in compressive strength of 

Fig. 13 Feature importance of XGBoost model

Fig. 14 Feature importance of gradient‑boosting regressor model
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concrete mixtures after the first 3 months. On the other 
hand, an inverse relationship exists between the model 
estimations and water quantity across the models, with 
increase in water quantity from 150 to 200 kg/m3 result-
ing in decrease in compressive strength. Interestingly, 
the estimated compressive strength does not decrease 
across the models when water quantity increases beyond 
200  kg/m3. For other input features, such as fine aggre-
gate and blast furnace slag, the estimated compressive 
strength slowly and marginally decreases as the former 
increases, while a marginally decreasing trend can be 
observed as the latter increases. The intuitive nature of 
the input–output relationships shown by the models 
reflect well the models learn from the given data.

4.7  Comparison with Previous Works
Given that compressive strength is one of the most 
important structural material properties in concrete 

research and design, several studies have developed intel-
ligent approaches for its accurate estimation over the 
past years. A considerable number of these studies have 
used either part or whole of the Lichman (2013) data 
set used in this research. Hence, it is considered worth-
while to compare the results obtained herein with the 
best results that have been reported in pertinent studies. 
Admittedly, ensuring an objective comparison of perfor-
mance with previous studies can be challenging, given 
the differences in statistical evaluation metrics, train-
ing–test split ratios (e.g., some may use 90:10 ratio, while 
others may use 70:30), sample size (e.g., some may use a 
subset of the data set, while others use the complete 1030 
samples) and the general experimental setup. Notwith-
standing, the comprehensive nature of the experiments 
carried out in this study naturally answers some of these 
concerns. Table  5 presents details of the representa-
tive studies grouped by experimental design, algorithm, 

Fig. 15 Partial dependence plots for the a CBT, b GBR, c LGBM and d XGB compressive strength estimation models
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data size and performance in terms of  R2, RMSE, MAE 
and MAPE where applicable. To ensure a fairly objective 
comparison, only studies that used the whole data set 
(i.e., 1030 samples) have been compared. The comparison 

has been grouped into two main categories, namely, 
average performance and cross validation performance, 
respectively. The mean results of 100 repetitions of the 
experiments presented in Sect. 4.3 (Fig. 10) is compared 

Table 5 Comparison with previous studies

Researcher Algorithm Data set size R2 RMSE MAE MAPE

Based on average performance/multiple cross validation

(Chou et al., 2011) ANN 1030 0.909 5.030 0.109

SVM 0.886 5.619 0.128

Multiple regression (MR) 0.611 10.429 0.317

Multiple Additive Regression Tree (MART) 0.911 4.949 0.139

Bagging Regression Tree (BRT) 0.890 5.572 0.142

(Erdal, 2013) Decision Tree (DT) 1030 0.818

Bagging DT 0.879

Gradient‑boosted DT 0.889

Random Sub‑spaced DT 0.868

(Chou et al., 2014) SVM 1030 5.59 3.75 0.12

Stacked CART + SVM + LR 5.08 3.52 0.12

(Feng et al., 2020) Adaboost 1030 0.952 4.856 3.205 0.114

(Farooq et al., 2021) Modified Random Forest Ensemble 1030 0.923 4.6 3.23

(Chen et al., 2021) CNN 1030 0.97 3.98 2.68

CNN–AP 0.97 4.09 2.92

CNN–MP 0.96 4.18 2.89

This Study XGB 1030 0.947 3.764 2.437 0.085

LGBM 0.947 3.764 2.439 0.086

CBT 0.951 3.605 2.246 0.077

GBR 0.944 3.841 2.425 0.084

Based on single cross validation

(Erdal et al., 2013) ANN 1030 0.909 5.57 4.18

Bagged ANN 0.928 4.87 3.60

Gradient‑boosted ANN 0.927 5.24 4.09

Wavelength‑bagged ANN 0.94 4.54 3.30

Wavelength gradient‑boosted ANN 0.953 5.75 4.83

(Silva et al., 2020) ANN 1030 0.89 5.9

SVM 0.83 7.5

Random forest 0.90 5.6

(Dao et al., 2020a, 2020b) Gaussian Process Regression (GPR‑52) 1030 0.884 5.702 4.058

Gaussian Process Regression (GPR‑32) 0.888 5.597 3.913

GPR using Exponential Kernel (GPR–EXP) 0.888 5.600 3.924

GPR using Square Exponential Kernel (GPR–SQEXP) 0.878 5.849 4.242

GPR using Rational Quadratic Kernel (GPR–RSQ) 0.880 5.793 4.182

Levenberg–Marquardt ANN 0.890 5.447 4.274

(Feng et al., 2020) Adaboost 1030 0.982 2.20 1.64 0.0678

(Salami et al., 2021) LSSVM–CSA 1030 0.954 3.335

GP 0.894 4.662

This Study XGB 1030 0.976 2.497 1.903 0.074

LGBM 0.974 2.596 2.007 0.079

CBT 0.984 2.071 1.597 0.063

GBR 0.973 2.664 1.901 0.072
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under the average performance category with the best 
results from studies in which experimental results were 
conducted using k-fold cross validation and the average 
performance reported, whereas the best results from 
studies that evaluate their models based on training–test 
cross validation are grouped under the cross validation 
category and compared with results presented in Table 3.

Table  5 presents the comparison of obtained results 
with the best from previous studies. A general obser-
vation from the table is the extensive use of ensem-
ble models and paucity of gradient-boosted models in 
compressive strength estimation of quaternary blend 
concrete. In terms of average performance, the best 
performance found in relevant studies was reported in 
Feng et al. (Feng et al., 2020), where the proposed Ada-
boost model yielded  R2 = 0.952, RMSE = 4.856 MPa, 
MAE = 3.205 MPa and MAPE = 0.114. Compared to the 
best average performance obtained in this study, the 
CBT model produced a better result in all the evalua-
tion metrics (25.76% RMSE, 29.92% MAE and 32.46% 
MAPE improvements, respectively) except in terms of 
 R2, where the score of 0.952 reported is marginally better 
than that average  R2 of 0.951 obtained over 100 repeti-
tions (about 0.1% improvement). It should also be noted 
the average performances of GBR, XGB and LGBM in 
terms of RMSE, MAE and MAPE are also better than 
what was reported in (Feng et  al., 2020). Likewise, the 
best cross validation performance found in the literature 
is  R2 = 0.982, RMSE = 2.20 MPa, MAE = 1.64 MPa and 
MAPE = 0.0678 reported in Feng et al. (Feng et al., 2020). 
In comparison with the best results obtained in this 
study, the  R2, RMSE. MAE and MAPE values of 0.984, 
2.071 MPa, 1.597 MPa and 0.063 are better with perfor-
mance improvement of 0.2%, 5.86%, 2.62% and 0.48%, 
respectively.

The impressive performance of the gradient-boost-
ing models presented in this study generally reflect 
the robustness each of each model to different evalua-
tion approaches for compressive strength of quaternary 
blend concrete estimation. However, it should be noted 
the performance reported in this study is limited to 1030 
concrete mix with age ranging from 1 to 365 days.

5  Conclusion
A comparative analysis of prediction of compressive 
strength of quaternary blend concrete with gradient-
boosted ensembles is presented in this study. Four 
popular gradient-boosting implementations, namely, gra-
dient-boosting regressor (GBR), light gradient-boosting 
model (LGBM), extreme gradient boosting (XGB) and 
CatBoost (CBT) were, respectively, used to build mod-
els for compressive strength estimation and results based 
on an out-of-sample test set as well as average cross 

validation are presented. Four popular evaluation metrics 
were used for performance evaluation with results show-
ing that CBT outperformed other methods across all the 
metrics with values of 0.9838, 2.0709, 1.5966 and 0.0629 
as the R2, RMSE, MAE and MAPE values, respectively. 
An analysis of the most important features to model per-
formance also shows that the age, quantity of cement and 
water in the concrete mixture have highest contributions 
to the compressive strength estimation of each model. 
In addition, a sensitivity analysis of the model prediction 
with varying values of input features confirms the impor-
tance of these features, notably showing no significant 
increase in compressive strength estimations after the 
first 100 days. Moreover, a comparison of results with 
findings from previous studies also shows the superiority 
of CBT and the other gradient-boosting models in esti-
mating compressive strength. CBT not only outperform 
the models on single evaluation with an out of sample 
test but also in terms of average performance. It is hoped 
that these findings will further increase the awareness 
of the predictive capabilities of CBT amongst and thus, 
increase its use alongside the growing computational 
tools at their disposal.

This study, though comprehensive, is not without limi-
tations. In relation to the data set, though, a fairly large 
representative one in concrete properties estimation, we 
acknowledge that machine learning models are only as 
good as their training data. Hence, the findings reported 
are based on the range of values reported in Sect.  3.1. 
Besides, the data set is not representative of all types 
of concrete mixtures, such as the rubberized recycled 
aggregate concretes and heat-treated concretes (Cakiro-
glu et al., 2023; Chen et al., 2021). These are viable areas 
for future investigation.

In addition, the relentless quest for improved accu-
racy of concrete properties and specifically compressive 
strength estimation has led to innovative learning meth-
ods, such as advanced deep learning algorithms with spe-
cialised loss functions Hoang (2023) and metaheuristic 
optimized DNN (Ranjbar et al., 2022) as well as ensemble 
of ensemble models (Lee et al., 2023). While these meth-
ods have potential shortcomings that relates to compu-
tational cost and overfitting, future works will explore 
feature selection, using only top-ranking features that 
contribute most to each model performance as shown in 
the feature importance and sensitivity analysis.
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