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Abstract 

Externally bonded reinforcement on groove (EBROG) is a significant reinforcement technology proposed by research-
ers to enhance the bond properties of reinforced concrete structural members. To understand the influence of groove 
size on concrete specimens of different strength, a total of 60 concrete specimens with 4 different strengths were cast 
with the single shear test in this paper, among which 48 EBROG specimens and 12 specimens with externally bonded 
reinforcement method (EBR) were used as the control group. The failure modes and failure mechanisms of specimens 
with various sizes and reinforcement methods were analyzed. Additionally, the test results of ultimate load, load–dis-
placement curves, and bond-slip curves for specimens with different groove sizes were compared. The effective-
ness of EBROG method in enhancing the ultimate load capacity at the bond interface of the specimens is proved. 
Furthermore, in situations where the volume of the groove was kept constant, the specimens with lower concrete 
strength and deeper groove exhibited superior bond properties. Also, the influence of groove width on bond proper-
ties was better than that of groove depth. Finally, the test results in this paper were compared with the prediction 
of the existing EBR and EBROG models to evaluate the performance of different models, and based on the original 
model, a prediction model for EBROG method in the groove region with higher accuracy was proposed.
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1 Introduction
Fiber reinforced polymer (FRP) composites have been 
utilized extensively in strengthening concrete struc-
tures due to their advantageous properties, such as 
high tensile strength and corrosion resistance (Li et al., 
2022; Massou et al., 2023; Tatar & Milev, 2021; Teng & 
Smith, 2002). The bond properties of FRP-to-concrete 
are a crucial factor that determines the effectiveness 
of concrete reinforcement (Aram et  al., 2008; Chen 
& Teng, 2001; Lu et  al., 2005). A traditional method, 

externally bonded reinforcement (EBR), often expe-
rienced premature debonding before the material 
reached its ultimate strength (Amirreza & Davood, 
2018; Teng et  al., 2003). Externally bonded reinforce-
ment on groove (EBROG) and externally bonded rein-
forcement in groove (EBRIG) had been introduced for 
concrete reinforcement to enhance the bond proper-
ties between the FRP sheet and concrete (Mostofine-
jad & Mahmoudabadi, 2010; Mostofinejad & Shameli, 
2013; Reza & Davood, 2022). EBROG was effective 
in strengthening concrete specimens and preventing 
debonding failures had been proved (Hosseini & Most-
ofinejad, 2013a; Khaled et al., 2022; Riyam et al., 2021). 
It had been observed that the groove width had great 
effect on improving the bonding stiffness and inter-
facial fracture energy was increased by increasing the 
groove depth (Hosseini & Mostofinejad, 2013b). The 
increase in groove depth enhanced the bond strength, 
and deeper groove was more effective for low-strength 
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concrete (Mostofinejad et  al., 2018). Moreover, for a 
given groove width, a remarkable improvement on 
bond properties can be achieved by an optimal groove 
depth in EBROG method (Amir & Niloufar, 2019a, 
2019b; Shaofei et al., 2023; Zolfaghari et al., 2023).

The shear stress distribution at the interface of con-
crete-FRP sheet plays a crucial role in determining the 
bond behavior of the FRP sheet. The transfer of tensile 
stress from the concrete specimen to FRP sheet is facili-
tated through the interfacial shear stress (Lu et al., 2005). 
To comprehend the relationship between the shear stress 
at the concrete-FRP sheet interface and the displace-
ment of the composite material relative to the concrete 
surface, bilinear and nonlinear prediction models had 
been proposed based on test results. Dai et  al. (2005) 
developed a bond-slip model for EBR reinforced concrete 
members, which was more accurate in predicting the 
bond properties of EBR reinforced specimens. Teng et al. 
(Aram et  al., 2008; Teng et  al., 2006) adopted a bilinear 
bond-slip model to analyze the whole process of inter-
facial bond-slip behavior in EBR reinforced concrete. 
Wang et al. () used a nonlinear bond-slip model to simu-
late the shear stress-slip relationship at the interface of 
concrete specimens reinforced by EBR, which was veri-
fied by test results. Fathi et  al. (2023) proposed a bilin-
ear bond-slip model based on the width factor obtained 
from the model in the literature (Lin et al., 2017). How-
ever, traditional EBR models don’t accurately predict the 
bond-slip relationship of EBROG reinforced concrete. 
Consequently, Mofrada et  al. (2019) proposed a nonlin-
ear bond-slip model that exhibits high precision and is 
suitable for predicting the bond behavior and strength 
of EBR and EBROG methods. Moghaddas et  al. (2021) 
proposed a bilinear bond-slip model based on their test 
results, which can predict bond strengths in 95% of the 
EBROG specimens with errors below 15% and applicable 
to concrete specimens reinforced by both the EBR and 
EBROG methods.

The existing researches had highlighted the significant 
influence of groove width and groove depth on the bond 
properties of EBROG specimens. Zolfaghari et al. (2023) 
emphasized the importance of finding the optimal com-
bination of groove width and groove depth to achieve the 
best bond properties in EBROG reinforced specimens. 
However, few studies explored the effect of groove size 
on concrete specimens with different strength grades. To 
address this gap, the effect of groove width and groove 
depth on the bond properties of EBROG specimens 
with different concrete strength will be investigated in 
this paper through single shear tests. The test results 
were compared with the prediction of the existing EBR 
and EBROG models to evaluate the performance of dif-
ferent models. Furthermore, a new prediction model for 

EBROG method with high accuracy, based on the origi-
nal model, was proposed to predict the maximum shear 
stress on the groove.

2  Experimental Procedure
2.1  Specimen Detail
A total of 60 specimens were prepared, including 12 
specimens using EBR method and 48 specimens using 
EBROG method. The EBR specimens were served as the 
control group, while concrete strength, groove width 
and groove depth were critical parameters in the design 
of EBROG group. To ensure the integrity of the CFRP 
sheets and prevent any premature damage during test, 
two aluminum sheets, 150  mm × 50  mm × 1  mm, were 
used to fix the CFRP sheet on the loading end. The CFRP 
sheet was 50 mm wide and had a bond length of 200 mm. 
A 30  mm unbonded length was intentionally left at the 
end of all specimens to avoid shear failure caused by 
stress concentration during loading process (Wu et  al., 
2012; Yao et al., 2005). Due to the groove in the middle of 
the specimen by EBROG method, the strain gauges were 
divided into two distinct regions at regular intervals of 
50 mm on the groove region, as shown in Fig. 1.

To ensure a clean and uniform surface for effective 
bonding, mechanical grinding tools and air gun noz-
zle were used to remove any loose or fragile material 
from the concrete surface. The groove in EBROG speci-
men was then fully filled with epoxy glue. Two layers of 
CFRP sheet were impregnated with epoxy adhesive and 
securely pasted onto the prepared concrete surface inside 
the groove. For EBR specimens, the concrete surface was 
mechanically ground to expose the coarse aggregate on 
a textured open surface. An epoxy primer was applied 
to the textured surface to enhance adhesion. The CFRP 
sheets were bonded to the concrete surface using an 
epoxy resin binder. All specimens were kept at room tem-
perature for two weeks to complete the curing process. 
The specimen was labeled as “C30-5-10-1” corresponded 
to the first specimen with concrete strength grade C30, 
groove depth of 5 mm and groove width of 10 mm.

2.2  Material Properties
To achieve a strong and durable bond between CFRP 
sheets and concrete surface, an epoxy resin adhesive 
with outstanding properties was selected. The measured 
performance indicators of CFRP sheets and epoxy resin 
according to GB/T3354 (2014) and GB/T1447 (2005) are 
shown in Table 1. The mixture of four different strength 
according to JGJ 55 (2011) is demonstrated in Table 2.

2.3  Test Setup and Instrumentation
The WAW-2000 microcomputer-controlled elec-
tro hydraulic servo universal testing machine was 
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employed in the test. To ensure loading stability and 
precision during test, a well-designed steel frame was 
utilized as shown in Fig. 2. The loading following spec-
ification ACI440.1R-06 (ACI440.1R-06, 2006). The 
loading rate was set at 0.5 mm/min. During the load-
ing, the fixed screws at the top of the steel frame were 

securely fixed into the testing setup. The CFRP sheets 
were connected to aluminum sheets fixed at the lower 
part of the test setup. The load, displacement and 
strain were continuously recorded in a strain collec-
tion system.

Fig. 1 Configuration of the specimen

Table 1 Material properties of CFRP sheets and Epoxy Resin

Material Length (mm) Width (mm) Thickness (mm) Elastic modulus 
(GPa)

Tensile strength 
(MPa)

Elongation %

CFRP sheet 550 50 0.167 231 3468 1.50

Epoxy resin – – – 311 48.8 1.73

Table 2 Details of concrete mixture [unit: kg/m3]

Strength grade Water Water reducer Coal Ash Cement Fine aggregate Coarse aggregate

C30 172.00 3.30 66.09 264.34 721.08 1176.49

C40 172.00 4.08 81.57 326.30 637.04 1183.08

C50 172.00 4.98 99.61 398.44 588.18 1141.76

C60 172.00 5.69 113.75 455.01 580.73 1078.50
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3  Analysis of Experimental Results
3.1  Failure Modes and Ultimate Load
The results and failure modes obtained from the single 
shear test are provided in Table 3 and the main failure 
modes of each specimen are shown in Fig. 3.

There were three kinds of failure modes in the test, 
debonding failure, fracture failure of CFRP sheet, and 
composite failure, denoted by D, F and C respectively. 
It can be concluded from Table  3 that debonding fail-
ure is independent of concrete strength in all speci-
mens with EBR method, in which the tensile strength 
of epoxy resin is significantly higher than that of con-
crete. Therefore, increase of concrete strength has no 
obvious effect on the improvement of bond properties 
in EBR specimens. In those specimens strengthened 

with EBROG method, fracture failure of the CFRP 
sheet or composite failure occurred. However, concrete 
strength has little effect on the failure modes, instead 
of groove width, which increase the bond area between 
CFRP sheet and concrete, allowing for a more effective 
transfer of interfacial shear stress. Composite failure 
occurred when the bond strength is lower than the ten-
sile strength of the CFRP sheet. While when the bond 
strength is higher than the tensile strength of the CFRP 
sheet, the fracture failure of CFRP sheet is dominated.

Table  3 shows the ultimate load of each specimen. It 
demonstrates that for each concrete strength, there is 
an optimum combination of groove sizes resulting in the 
maximum loading capacity for the EBROG specimens. 
Notably, at the same concrete strength grade, the ulti-
mate load of EBROG specimens are above two times of 
EBR specimens, highlighting the remarkable strengthen-
ing effect of the EBROG method. Taking C40 group as an 
example, increasing of ultimate load compared with EBR 
specimens is shown in Fig.  4. It indicates that the opti-
mum groove sizes, with a depth of 15 mm and width of 
20 mm, can be achieved for C40 group when its ultimate 
load reaches the maximum. This suggests specific groove 
sizes should be chosen to achieve a best enhancement at 
specific concrete strength.

3.2  The Effect of Groove Size
The influence of groove size on the ultimate load of 
EBROG specimens is shown in Fig.  5, where the letter 
“V” represents the volume of the groove. It indicates that 
the effect of groove size on the bond strength of the inter-
face varies for EBROG specimens with different concrete 
strengths.

Increase in groove volume does not necessarily lead to 
a linear increase in the ultimate load of the specimens. 
Instead, the effect of groove volume on the ultimate load 
is closely related to the specific groove width and depth. 
Regardless of the concrete strength, when the groove 
volume is the same, the ultimate load of the specimen 
with a wider groove is larger, which indicates that groove 
width plays a more critical role in determining the bond 
strength and ultimate load of the EBROG specimens. For 
C40 group, when the groove volume is the same, the ulti-
mate load value of the specimen with a deeper groove 
is larger. However, for C60 group, when the groove vol-
ume is the same, the ultimate load of the specimen with 
a deeper groove is smaller. It can be concluded that, for 
lower concrete strength, increasing the groove depth 
contributes to improving the bond strength and ulti-
mate load of the EBROG specimens. Conversely, for 
higher concrete strength grades, a smaller groove depth 
can result in better bond strength and ultimate load for 
EBROG specimens.

Fig. 2 Steel frame for supporting concrete specimen
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Table 3 Experimental results and failure mode

Specimen-number Concrete-
strength (MPa)

Groove depth 
(mm)

Groove width 
(mm)

Groove volume 
 (cm3)

Ultimate load 
(kN)

Average load 
(kN)

Failure mode

C30-0-0-1 38.3 – – – 7.00 6.83 D

C30-0-0-2 38.3 – – – 6.01 D

C30-0-0-3 38.3 – – – 7.49 D

C30-5-5-1 38.3 5 5 5 9.16 9.62 C

C30-5-5-2 38.3 5 5 5 10.30 F

C30-5-5-3 38.3 5 5 5 9.39 C

C30-10-10-1 38.3 10 10 20 13.31 11.80 F

C30-10-10-2 38.3 10 10 20 11.04 C

C30-10-10-3 38.3 10 10 20 11.05 F

C30-15-15-1 38.3 15 15 45 14.12 13.63 F

C30-15-15-2 38.3 15 15 45 13.39 C

C30-15-15-3 38.3 15 15 45 13.93 F

C30-20-20-1 38.3 20 20 80 18.93 18.96 C

C30-20-20-2 38.3 20 20 80 19.07 F

C30-20-20-3 38.3 20 20 80 18.87 C

C40-0-0-1 48.0 – – – 8.61 7.93 D

C40-0-0-2 48.0 – – – 8.13 D

C40-0-0-3 48.0 – – – 7.05 D

C40-5-10-1 48.0 5 10 10 12.14 13.42 F

C40-5-10-2 48.0 5 10 10 14.61 C

C40-5-10-3 48.0 5 10 10 13.52 C

C40-10-5-1 48.0 10 5 10 12.07 13.07 F

C40-10-5-2 48.0 10 5 10 12.76 F

C40-10-5-3 48.0 10 5 10 14.38 F

C40-15-20-1 48.0 15 20 60 16.50 17.05 F

C40-15-20-2 48.0 15 20 60 18.07 C

C40-15-20-3 48.0 15 20 60 16.57 F

C40-20-15-1 48.0 20 15 60 13.84 12.54 F

C40-20-15-2 48.0 20 15 60 10.19 C

C40-20-15-3 48.0 20 15 60 13.61 F

C50-0-0-1 53.7 – – – 6.09 7.44 D

C50-0-0-2 53.7 – – – 8.35 D

C50-0-0-3 53.7 – – – 7.87 D

C50-5-15-1 53.7 5 15 15 16.49 15.22 F

C50-5-15-2 53.7 5 15 15 14.55 C

C50-5-15-3 53.7 5 15 15 14.63 F

C50-10-20-1 53.7 10 20 20 18.49 17.73 C

C50-10-20-2 53.7 10 20 20 18.62 F

C50-10-20-3 53.7 10 20 20 16.09 C

C50-15-5-1 53.7 15 5 15 11.08 10.68 F

C50-15-5-2 53.7 15 5 15 10.35 C

C50-15-5-3 53.7 15 5 15 10.61 F

C50-20-10-1 53.7 20 10 40 14.81 13.64 F

C50-20-10-2 53.7 20 10 40 13.83 C

C50-20-10-3 53.7 20 10 40 12.29 C

C60-0-0-1 65.6 – – – 6.70 6.85 D

C60-0-0-2 65.6 – – – 7.19 D

C60-0-0-3 65.6 – – – 6.65 D
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Table 3 (continued)

Specimen-number Concrete-
strength (MPa)

Groove depth 
(mm)

Groove width 
(mm)

Groove volume 
 (cm3)

Ultimate load 
(kN)

Average load 
(kN)

Failure mode

C60-5-20-1 65.6 5 20 20 16.30 15.68 C

C60-5-20-2 65.6 5 20 20 14.91 C

C60-5-20-3 65.6 5 20 20 15.84 C

C60-10-15-1 65.6 10 15 30 13.83 13.91 C

C60-10-15-2 65.6 10 15 30 14.38 C

C60-10-15-3 65.6 10 15 30 13.52 F

C60-15-10-1 65.6 15 10 30 13.37 12.52 F

C60-15-10-2 65.6 15 10 30 13.33 C

C60-15-10-3 65.6 15 10 30 10.87 C

C60-20-5-1 65.6 20 5 20 10.29 11.18 C

C60-20-5-2 65.6 20 5 20 11.64 F

C60-20-5-3 65.6 20 5 20 11.61 C

Fig. 3 Failure modes of specimens (a Debonding failure, b CFRP sheets fracture failure, c Composite failure)
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3.3  Load–Displacement Behavior
The load–displacement curves of C40 and C50 groups 
are drawn, as shown in Fig. 6. The three stages observed 
in the load–displacement curves, namely the elastic 
stage, softening stage, and failure stage. At the initial 
stage of loading, the load and displacement exhibit a lin-
ear increase, indicating that the bond interface between 
the CFRP sheets and concrete is in elastic stage. As the 
load continued to increase and approaches 85% of the 
ultimate load, the curve enters the softening stage. In this 
stage, the bond interface between CFRP sheets and the 
concrete begins to weaken, leading to a gradual loss of 
bond strength. As a result, the slope of the load–displace-
ment curve becomes smaller as the specimen starts to 
experience debonding or separation between the CFRP 
sheets and the concrete. In failure stage, with the expan-
sion of microcracks at the concrete surface, the adhesive 
layer between the CFRP sheets and the concrete was 
destroyed, CFRP was completely separated from the con-
crete under the failure load (Yuan et al., 2019), then brit-
tle damage occurred abruptly.

Energy absorption ability is an important parameter 
to evaluate the ability of a specimen against non-elastic 
deformation and loading capacity. The area under the 
load–displacement curve is normally used to define the 
energy absorption capacity of the specimen (Gulec, 2023; 
Gulec et al., 2020, 2021), which is calculated by the fol-
lowing formula (Gulec et al., 2021):

where d1 and d2 are two successive displacement points 
of the load–displacement curve; F is the load at this 
displacement;

The energy absorption capacity of the specimens is 
given in Table  4. Fig.  7 shows the increase in energy 
absorption of EBROG specimens compared with EBR 
specimens. It can be seen that the energy absorption 

(1)
Energy absorption = 0.5× (d2 − d1)× (F2 − F1)

capacity of EBROG specimens is more than 100% higher 
compared to EBR specimens. Moreover, the specimen 
with a wider groove has a greater energy absorption 
capacity compared to the specimen with a deeper groove 
when the energy absorption capacities of the specimens 
with the same concrete strength were compared. It is 
clear that groove width had a better effect on improving 
the bond properties and loading capacity of specimens 
than groove depth.

3.4  Bond-slip Behavior
The bond-slip curve is an effective reference for evaluat-
ing the local bond properties of the bond interface, and 
it defines the constitutive relationship of bond properties 
between different materials. Up to now, many tests and 
studies on the bond-slip behavior of EBR reinforced spec-
imens had been conducted (Al-Mahaidi & Kalfat, 2011; 
Dai et  al., 2005; Teng et  al., 2006; Wang, 2006a; Zhang, 
2018; Zhou et  al., 2010). But there were few studies on 
the bond-slip behavior of EBROG reinforced specimens, 
which will be analyzed in the section.

The interface shear stress can be calculated by the fol-
lowing formula (Al-Mahaidi & Kalfat, 2011):

where τ is the shear stress between two consecutive 
measuring points;Ef  is the elastic modulus of CFRP 
sheet;tf  is the thickness of CFRP sheet;εi and εi+1 are the 
strain value at two consecutive measuring points; �x is 
the distance between two measuring points.

The local slip between the concrete interface and the 
CFRP sheet is caused by the strain difference. When the 
bond length between the CFRP sheets and the concrete 
interface is long, it can be assumed that the slip at the 
free end is close to zero (Zhou et al., 2010). Therefore, the 
slippage of the bonding interface can be calculated by the 
following formula:

where εi is the slippage of the measuring point i;ε0 is the 
strain value of the first measuring point near the free end.

The bond-slip curves of C40 group are taken as an 
example to analyze the bond-slip behavior of EBR and 
EBROG specimens, which are shown in Fig. 8. It shows 
that both the bond-slip curves of EBR and EBROG speci-
mens can be approximated by bilinear curves. These 
curves can be divided into two stages: the elastic defor-
mation stage and the interface failure stage. In the elas-
tic deformation stage, the bond behavior is relatively 

(2)τ =
Ef tf (εi+1 − εi)

�x

(3)si =
�x
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linear, and the bond strength between the CFRP sheets 
and the concrete surface increases with increasing slip 
at the bond interface. The interface failure stage occurs 
when the bond strength reaches its maximum and starts 
to decrease as the slip continues to increase. At this stage, 
microcracks may develop at the FRP-concrete interface, 
leading to a reduction in the bond strength. Ultimately, 
debonding occurs, and the bond between the CFRP 
sheets and the concrete is lost.

The interfacial fracture energy is one of the key param-
eters affecting the debonding failure. It can be defined 
as the area under the bond-slip curve. When the bond 

interface can withstand higher interfacial fracture energy, 
it proves that the bond strength is higher (Lin et al., 2017). 
The analysis of Fig.  8a and b highlights the difference 
in the bond-slip behavior between the outside-groove 
region and the groove region of EBROG specimens com-
pared to EBR specimens. In the outside-groove region, 
the bond-slip behavior of EBROG specimens shows min-
imal improvement in terms of the maximum shear stress, 
interfacial fracture energy, and corresponding slip com-
pared to EBR specimens.

However, in the groove region, the maximum shear 
stress and interfacial fracture energy are greatly increased 

13.42 13.07

17.05

12.54

C40-5-10 C40-10-5 C40-15-20 C40-20-15
0

2

4

6

8

10

12

14

16

18

U
lti

m
at

e 
lo

ad
 (K

N
)

V=10cm
3

V=10cm
3

V=60cm
3

V=60cm
3

Specimens
C50-5-15 C50-15-5 C50-10-20 C50-20-10

U
lti

m
at

e 
lo

ad
 (K

N
)

Specimens

V=15cm
3

V=15cm
3

V=40cm
3

V=40cm
3

(a) (b)

15.68

11.16

13.91

12.52

C60-5-20 C60-20-5 C60-10-15 C60-15-10
0

2

4

6

8

10

12

14

16

18

U
lti

m
at

e 
lo

ad
 (K

N
)

Specimens

V=20cm
3

V=20cm
3 V=30cm

3 V=30cm
3

(c) 
Fig. 5 The effect of groove size on ultimate load (a C40 concrete specimen group, b C50 concrete specimen group, c C60 concrete specimen 
group)



Page 9 of 14Han et al. Int J Concr Struct Mater           (2024) 18:32  

compared to EBR specimens which indicates that the 
presence of groove effectively enhances the bond strength 
and resistance to debonding. Furthermore, increas-
ing the width of the groove results in a more significant 

improvement in bond properties compared to increasing 
the depth of the groove, which indicates that the groove 
width has a more substantial influence on the shear stress 
and interfacial fracture energy than the groove depth in 
the groove region.

4  Performance Evaluation of Proposed Models
4.1  Performance Evaluation of Existing EBR Models
The prediction of some EBR models and the test results 
of this paper are shown in Table 5, which demonstrates 
that an increase in concrete strength has a positive corre-
lation with the maximum shear stress of EBR specimens. 
As the concrete strength increases, the bond strength 
between the CFRP sheets and concrete surface tends to 
increase, resulting in higher maximum shear stress.

Various prediction models were developed by some 
researchers to estimate the maximum shear stress of EBR 
specimens, considering many factors such as concrete 
strength, interfacial fracture energy, and the stiffness of 
the carbon fiber sheet. Among these models, the predic-
tion model proposed by Dai et  al. (2005) stood out as 
being relatively accurate in its predictions, matching the 
test results. In contrast, other prediction models pro-
posed by Lu et al. (2005) and Sun et al. (2017) tended to 
overestimate the influence of concrete strength, leading 
to lower prediction accuracy. Moreover, the test results 
indicate that the maximum shear stress of EBR speci-
mens is similar with EBROG specimens on the outside-
groove region, and it is not significantly affected by the 
groove size. It suggests that the presence of groove in the 
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Fig. 6 Load–displacement curves (a C40 specimens, b C50 specimens)

Table 4 Energy absorption of EBROG and EBR specimens

Concrete 
strength

Specimen Energy 
absorption 
(kN·mm)

Energy absorption 
ratio (EBROG/EBR)

C30 C30-0-0 17.96 –

C30-5-5 40.18 2.24

C30-10-10 51.86 2.89

C30-15-15 60.27 3.36

C30-20-20 112.85 6.28

C40 C40-0-0 31.11 –

C40-5-10 69.82 2.24

C40-10-5 62.39 2.01

C40-15-20 105.14 3.38

C40-20-15 60.98 1.96

C50 C50-0-0 22.57 –

C50-5-15 89.99 3.99

C50-10-20 114.16 5.06

C50-15-5 51.55 2.28

C50-20-10 69.11 3.06

C60 C60-0-0 21.93 –

C60-5-20 100.19 4.57

C60-10-15 68.02 3.10

C60-15-10 58.97 2.69

C60-20-5 66.82 3.05
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EBROG method does not significantly influence the max-
imum shear stress on the outside-groove region. There-
fore, Dai’s model proves to be a better prediction model 

for both EBR and EBROG specimens on the outside-
groove region.
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4.2  Performance Evaluation of Existing EBROG Models
As can be seen from Fig.  8, the bond-slip curves of 
EBROG specimens can be simplified into bilinear. 
Moghaddas et  al. (2021), using test results, proposed a 
bilinear bond-slip model to predict the bond properties 
in outside-groove and groove region. The performance 
of Moghaddas’s model (Moghaddas et  al., 2021) in pre-
dicting the maximum shear stress of EBROG specimens 
is compared with the test results of this paper in Table 6. 
The model accuracy can be calculated by the following 
formula:

The analysis presented in Table 6 indicates that the model 
accuracy for predicting the maximum shear stress in the 
outside-groove region is less than 50%. It is observed that 
for specimens with smaller groove width, the predictions 
of the maximum shear stress in the groove position were 

(4)

Model accuracy = 100−
∣

∣Experiment− Perdiction
∣

∣

Experiment
× 100

larger than the actual test results. This discrepancy may be 
attributed to the fact that the existing models overlooked 
the influence of groove width on the bond properties.

4.3  Modification of the Existing Model
Considering the influence of groove width on the bond 
properties of EBROG specimens is crucial for accurately 
predicting the maximum shear stress in the groove region. 
By modifying the calculation model proposed by Moghad-
das et al. (2021), the maximum shear stress in the groove 
region is calculated as following formula:

where Ef  is the elastic modulus of CFRP sheet; tf  is the 
thickness of CFRP sheet; f ′ is the concrete compressive 
strength; h is groove depth; w is groove width.

(5)τmax = 0.277×
(

Ef tf
)0.3

f ′0.12c h0.1w0.43

Table 5 Maximum shear stress of specimens, along with the predictions of existing EBR models [unit: MPa]

Specimen number This paper Dai et al. (2023) Lu et al. (2005) Sun et al. (2017)

C30-0-0 2.71 3.69 4.24 4.81

C40-0-0 2.85 3.89 4.94 5.22

C50-0-0 3.08 3.99 5.22 5.45

C60-0-0 3.10 4.18 6.02 5.88

Table 6 The performance evaluation of the existing model

Specimen number This paper 
(MPa)

Moghaddas et al. 
(2021) (MPa)

Model accuracy 
(%)

This paper 
(MPa)

Moghaddas et al. 
(2021) (MPa)

Model 
accuracy 
(%)

Outside-groove region Groove region

C30-5-5 2.78 4.42 41.01 3.64 6.63 17.86

C30-10-10 2.79 4.74 30.11 4.42 7.11 39.14

C30-15-15 2.75 4.94 20.36 5.78 7.40 71.97

C30-20-20 2.76 5.08 15.94 8.11 7.62 93.96

C40-5-10 2.78 4.68 31.65 5.26 6.81 70.53

C40-10-5 2.89 5.01 26.64 3.76 7.30 5.85

C40-15-20 2.84 5.22 16.20 8.10 7.61 93.95

C40-20-15 2.84 5.37 10.92 7.16 7.83 90.64

C50-5-15 3.18 4.77 50.00 6.02 6.91 85.22

C50-10-20 2.95 5.11 26.78 7.42 7.40 99.73

C50-15-5 3.02 5.32 76.16 4.60 7.71 32.39

C50-20-10 3.04 5.48 19.74 5.24 7.93 48.66

C60-5-20 3.06 4.99 36.93 7.03 7.07 99.43

C60-10-15 2.94 5.34 18.37 6.68 7.58 86.53

C60-15-10 3.06 5.57 17.97 5.67 7.90 60.67

C60-20-5 3.11 5.73 15.76 4.73 8.13 28.12
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4.4  Verification of the New Proposed Model
The proposed model is verified using some test results, 
which is shown in Table 7. The model accuracy is more 
than 90% that indicates the proposed model can be used 
to predict the maximum shear stress in the groove region 
with higher accuracy.

5  Conclusions
In this paper, the effects of groove width and groove 
depth on the CFRP-concrete interface loading capacity 
and bond properties of concrete reinforced specimens 
with different strengths, using EBR method and EBROG 
method were studied through the single shear test, and 
the accuracy of the bond-slip models of the existing EBR 
method and EBROG method was evaluated compared 
with the test results. The following conclusions can be 
drawn:

(1) Debonding failure occurred in all specimens 
strengthened by the EBR method whereas CFRP 
sheet fracture failure and composite failure 
occurred in the specimens treated with the EBROG 
method. This difference can be attributed to the 
presence of the groove, which increased the bond-
ing aera between CFRP sheet and concrete and 
enhanced the bond properties of the reinforced 
specimens.

(2) The bond properties of specimens reinforced by 
EBROG method consistently exhibited better 
results with changes in groove width than groove 
depth. The increase of groove width can improve 
the ability of energy absorption and loading capac-
ity of the specimens with EBROG method, so as to 
improve the bonding properties.

(3) Specimens with low concrete strength and deeper 
groove displayed higher loading capacity with the 
same groove sectional aera, while specimens with 

high concrete strength and shallower groove exhib-
ited enhanced loading capacity.

(4) Comparing with EBR specimens, the EBROG spec-
imens demonstrated a significant increase in bond 
properties in the groove region, while there was lit-
tle improvement in the outside-groove region.

(5) Dai’s EBR bond-slip model can accurately predict 
the maximum shear stress of EBROG specimens 
in the outside-groove region, and the new EBROG 
bond-slip model obtained by modifying Moghad-
das’s model had higher accuracy in predicting the 
maximum shear stress in the groove region.
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Table 7 The performance evaluation of the proposed model

Specimen number Concrete 
strength 
(MPa)

Ef tf  (kN/mm) Groove 
depth (mm)

Groove 
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Average 
test results

Average 
predictions

Model accuracy
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C50-5-15 53.7 77.145 5 15 6.02 6.03 99.83

C60-15-10 65.6 77.145 15 10 5.67 5.81 97.53
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