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Abstract: The paper presents a research project on the tensile properties of RPC mixed with both steel and polypropylene fibers

after exposure to 20–900 �C. The direct and the indirect tensile strength (in bending) were measured through tensile experiment on

dog-bone specimens and bending experiment on 40 9 40 9 160 mm prisms. RPC microstructure was analyzed using scanning

electron microscope. The results indicate that, steel fibers can significantly improve the tensile performance of hybrid fiber-

reinforced RPC, whereas polypropylene fibers have no obvious effect on the tensile performance. With increasing temperature, the

flexural and axial tensile strength of hybrid fiber-reinforced RPC substantially decrease linearly, which attributes to the deterio-

rating microstructure. Based on the experimental results, equations are established to express the decay of the flexural and tensile

strength with increasing temperature.

Keywords: reactive powder concrete (RPC), tensile properties, elevated temperatures, steel fiber, polypropylene fiber,

scanning electron microscope (SEM).

1. Introduction

The tensile properties of concrete after high temperature
are very important for the evaluation of the residual behavior
in tension of concrete structures after exposure to high
temperatures (EN 1992-1-2 2004). Up to now, a lot of
research on the residual mechanical properties of normal
strength concrete (NSC) and high strength concrete (HSC)
has been performed. It was found that the flexural strength
and tensile strength of both NSC and HSC substantially
decrease linearly with increasing temperature (Husem 2006;
Khalig and Kodur 2011; Chang et al. 2006). Adding steel
fibers to the concrete can effectively improve the tensile
properties after exposure to high temperature (Song and
Wang 2004), whereas the incorporation of polypropylene
fibers has no obvious effect on the tensile properties (Xiao
and Falkner 2006). The variations exhibited by the flexural
strength for HSC with or without steel fibers and
polypropylene fibers were explained by Pliya et al. (2011)
Chen and Liu (2004) studied the effect of steel fibers,
polypropylene fibers and hybrid fibers on the residual
splitting tensile strength of HSC. Compared with plain
concrete, the residual splitting tensile strength of HSC mixed
with steel and polypropylene fibers improved significantly.

The difference with NSC is that HSC is more prone to
spalling when subjected to high temperature. Kodur (2000)
considered that the low tensile strength and low porosity led
to HSC spalling under the high temperature. Kalifa et al.
(2000) found that the spalling probability of HSC improved
under high temperature owing to its pore pressure being
much higher than the NSC. The incorporation of steel fibers
and polypropylene fibers can effectively reduce the occur-
rence of spalling. Han et al. (2005) discussed the influence of
polypropylene fibers, metal fibers, carbon fibers and glass
fibers on the spalling performance of HSC.
Reactive Powder Concrete (RPC) is an ultra high strength

cement-based composite material made of ultra-fine reactive
powder, cement, fine aggregate, high-strength steel fibers
and other components (Richard and Cheyrezy 1995). It is a
very promising building material in the field of civil engi-
neering. Currently, many studies have been completed on the
mechanical properties of RPC at room temperature, and the
studies show that the mechanical properties of RPC are
better than NSC and HSC (Yazıcı et al. 2010; Bayard and Ple
2003; Rashad et al. 2013). The steel fibers contained in RPC
can greatly improve its tensile strength and toughness (Kang
et al. 2010). Few studies have been performed on the
mechanical properties of RPC after exposure to high tem-
perature, especially on the tensile properties. Tai et al. (2011)
showed that the mechanical properties of steel fiber-rein-
forced RPC increased firstly and then decreased with
increasing temperature. Due to the elimination of the coarse
aggregate, RPC has a denser internal structure than HSC
(Cheyrezy et al. 1995; Li et al. 2012; Vance et al. 2014).
Therefore, RPC is more prone to spalling than HSC under
heating. The same with HSC, the incorporation of steel
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fibers and polypropylene fibers can also inhibit the spalling
of RPC.
From above analysis it is found that the incorporation of

steel fibers can obviously improve the mechanical properties
of RPC, and the incorporation of polypropylene fibers have
little effect on the mechanical properties, but can greatly
reduce the damage extent of high-temperature to the speci-
men. When RPC mixed with both steel fibers and
polypropylene fibers, on the one hand, the mechanical
properties can be improved evidently, on the other hand, the
high temperature spalling can be effectively suppressed.
For the abovementioned reasons, it is necessary to study

the mechanical properties of RPC after exposure to elevated
temperatures. A previous research (Zheng et al. 2012b) has
discussed the compressive behaviour of hybrid fiber-rein-
forced RPC after exposure to high temperature. In this paper,
in order to study the tensile properties of hybrid fiber-rein-
forced RPC after exposure to 20, 120, 200, 300, 400, 500,
600, 700, 800 and 900 �C, bending and direct tensile tests
were carried out on 40 9 40 9 160 mm prisms and dog-
bone specimens. The effects of fiber type, fiber content and
temperature on the flexural strength and direct tensile
strength are studied. The microstructure of RPC after dif-
ferent temperatures is studied using SEM test. Equations to
express the decay of the flexural and direct tensile strength
with temperature are proposed.

2. Experimental Program

2.1 Raw Materials and Mix Proportion
RPC was prepared on the basis of the following ingredi-

ents: ordinary Portland cement with Grade of 42.5 (Chinese
cement grading system); silica fume with specific surface
area of 20780 m2/kg and SiO2 mass fraction of 94.5 %; slag
with the 28 days activity index of 95 % and specific surface
area of 475 m2/kg; quartz sand with SiO2 mass fraction of
higher than 99.6 %, and diameter range of 600–360 and
360–180 lm; concentrated naphthalene water reducer with
form of brown powder; high-strength steel fiber with
diameter of 0.22 mm and length of 13 mm; polypropylene
fiber (PPF) with melting point of 165 �C and length of
18–20 mm.
Using above materials, the composition test on mix pro-

portion was performed in advance, and the optimum mixture
ratio was found out as: cement: silica fume: slag: quartz
sand: water reducer: water = 1:0.3:0.15:1.2:0.058:0.29 (Li
et al. 2010). Based on the optimum mixture ratio, through
mixing different volume dosage of steel fiber and
polypropylene fiber, three mix proportions (HRPC1, HRPC2
and HRPC3) are determined in this test, and the corre-
sponding steel fiber and polypropylene fiber volume dosage
are (2 %, 0.1 %), (2 %, 0.2 %) and (1 % 0.2 %), as shown
in Table 1.

2.2 Specimen Design and Fabrication
The RPC preparation has to follow certain requirements.

Firstly, the pre-weighed quartz sand, cement, slag, silica

fume and water reducer were poured into concrete mixer and
mixed for 3 min, then the pre-weighed water was poured
into mixer and mixed for 5 min, next, the polypropylene
fibers and steel fibers were poured into mixer and mixed for
5 min, finally, the mixture was poured into molds and
vibrated on a high-frequency vibration table. After being
stored for 1 day in the standard conditions, the specimens
were demoulded and cured for 3 days at 90 �C in the con-
crete accelerated curing box. Next, the specimens were
moved into a standard curing room and cured for 60 days.
Before heating treatment, the specimens were taken out of
standard curing room and exposed to air for 2 months.
Specimens used for the bending tests were

40 mm 9 40 mm 9 160 mm prisms; specimens used for
the direct tensile test were dog-bone specimens, as shown in
Fig. 1. According to the mix proportions in Table 1, for each
mix proportion, ten groups of specimens were prepared.
Each group consisted of three nominally identical speci-
mens, a total of 180 specimens were prepared, and the final
result is taken as the average of three test data.

2.3 High Temperature Tests
According to EN 1992-1-2 (2004), The high-temperature

experiments were performed using an electric furnace once
the specimens attained the required age, and ten reference
temperatures were considered: 20, 120, 200, 300, 400, 500,
600, 700, 800 and 900 �C. The heating rate was 4 �C/min.
The reference temperature was maintained for 2 h, so that
the temperatures inside and outside of the specimen could be
consistent. Through opening the furnace door, the specimens
were cool down to room temperature. The temperature–time
curves of the furnace for the different target temperatures are
given in Fig. 2.

2.4 Bending and Tensile Tests Regime
The bending and tensile tests were carried out after the

specimens were placed indoors for 3 days after high tem-
perature tests. According to GB/T 17671 (1999), the bending
tests were performed on a YAW-300 microcomputer auto-
matic press-fold cement testing machine by self-made fix-
ture, as shown in Fig. 3a. A steel bar with diameter of
10 mm was placed on the specimen surface in contact with
the testing machine platen. The tests were controlled by load,
and the loading rate was 0.5 kN/s. According to SL 352
(2006), the tensile tests were performed on a WDW3100
computer-controlled electronic universal testing machine
through the pulling method with enlarging the specimen
ends, as shown in Fig. 3b. The tests were controlled by
displacement, and the loading rate was 0.5 mm/min.

2.5 Scanning Electron Microscope (SEM) Test
The microstructure of concrete after exposure to high

temperature determines its macroscopic mechanical proper-
ties, so it is important to study the morphology and com-
position of RPC after elevated temperatures. In this paper,
the samples used for SEM tests were taken from the speci-
mens tested in direct tension, and exposed to 20, 200, 400,
600 and 800 �C. Zhou (2000) detailed description of the

30 | International Journal of Concrete Structures and Materials (Vol.10, No.1, March 2016)



SEM test method. Firstly, small pieces of samples about
5 mm were prepared, then the small pieces were dried,
vacuum pumped and sprayed-gold successively. Next, the
microstructure of RPC matrix, bonding interface between
steel fiber and matrix, PPF and PPF melting channel were
photographed and observed using the Quanta200 scanning
electron microscope.

3. Results and Discussions

3.1 Failure Modes of Specimen
3.1.1 Flexural Failure Mode
Figure 4 shows the flexural failure modes corresponding

to HRPC3 after exposure to elevated temperatures. With
increasing load, a clear crack appeared first in the tension
zone of the specimen. Meanwhile, the steel fibers crossing
the crack came into play. As the load increased continually,
the crack began to expand, meanwhile, the steel fibers
constantly pulled out, and the load reached the maximum.
Finally, the specimen damaged but did not break, and the
failure mode presented obviously toughness when the tem-
perature is lower than 700 �C. When the temperature is
higher than 700 �C, the steel fibers lost effect, and the failure
mode turned brittle.

3.1.2 Tensile Failure Mode
The tensile failure modes of HRPC2 are shown in Fig. 5.

All specimens of RPC corresponding to different mix pro-
portions are pulled off along the cross-section of specimen
with only one main crack. The bonding effect between the
fibers and the matrix are destroyed gradually with the crack
expanding. The steel fibers distribution on the crack is
uneven and interlocked, and the steel fiber ends are still
embedded in the RPC matrix. For temperatures below
700 �C, the steel fibers work effectively, and its incorpora-
tion improves the toughness of RPC, so the tensile failure
mode is ductile failure. Beyond 700 �C, the carbonization of
steel fibers occurs, and the steel fibers in RPC lose effec-
tiveness, which increase the brittleness of RPC, so the failure
mode converts to brittle.
As can be seen from the previous discussion, the ductility

and toughness of RPC gradually improves with increasing
steel fiber content. The interlocked distribution of the steel
fibers is the main reason for RPC failure modes shifting from
brittle to ductile.

Table 1 Mix proportions of HRPC.

Series Binding materials (kg/m3) Quartz sand
(kg/m3)

Water reducer
(kg/m3)

Water (kg/m3) Steel fiber (%) PPF (%)

Cement Silica fume Slag

HRPC1 799.72 239.92 119.96 959.66 46.38 231.92 2 0.1

HRPC2 798.90 239.67 119.84 958.68 46.34 231.68 2 0.2

HRPC3 807.07 242.12 121.06 968.48 46.81 234.05 1 0.2

Steel fibers and polypropylene fibers content are the volume dosage.

Fig. 1 Dimensions of dog-bone specimen (Thickness of
specimen: 45 mm).

Fig. 2 Temperature-time curves of the furnace for the differ-
ent target temperatures.

Fig. 3 Loading devices for bending and tensile tests.
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3.2 Flexural Strength
The absolute and relative values of flexural strength for

HRPC after different temperatures are given in Fig. 6. As
seen from Fig. 6a, the flexural strength decreases gradually
with increasing temperature, and the flexural strength of
HRPC1, HRPC2 and HRPC3 reduces to 22.74, 24.55 and
19.28 % after 900 �C of the value at room temperature. For
the same heating treatment, the residual flexural strength of
HRPC1 and HRPC2 with the same steel fiber content of 2 %
has almost no difference, but is much larger than HRPC3
with steel fiber content of 1 %, which means that the steel
fibers can effectively improve the flexural strength of RPC
after exposure to high temperature. On the contrary, PPF has
little effect on improving flexural strength. At the tempera-
ture not higher than 165 �C, PPF has not melt and it presents
a weakening effect on flexural strength because of its lower
modulus of elasticity (HRPC1[HRPC2). At the tempera-
ture of 165–500 �C, the high temperature damage is weak,
but the melting PPF channels increase the internal defects of
RPC matrix, and such internal defects play a major role, so
the flexural strength of HRPC1 is also higher than HRPC2 in
this temperature range. When the heating temperature over
500 �C, the high temperature damage play a major role, but
the PPF melting channels provide path for steam overflow-
ing, which made the specimen suffered minor high

temperature damage, so its incorporation provides a positive
impact on flexural strength in this temperature range
(HRPC2[HRPC1).
By linear fitting, for HRPC1, HRPC2 and HRPC3, the

relationship between the relative flexural strength ffT
�
ff and

the temperature T can be expressed as Eq. (1). As shown in
Fig. 6b.

ffT
ff

¼ 1:02� 0:88
T

1000

� �
; 20 �C� T � 900 �C;

R2 ¼ 0:996
ð1Þ

where ffT and ff are the flexural strength of HRPC specimen
after elevated temperatures and at room temperature
respectively (MPa); T is the reference temperature (�C); R2 is
the correlation coefficient to evaluate simulation result.
Figure 6b also shows the curves of the relative flexural

strength for RPC with only steel fibers (SRPC) (Zheng et al.
2012a with steel fiber volume dosage of 1–3 %), RPC with
only PPF (PRPC) (Zheng et al. 2012c with PPF volume
dosage of 0.2–0.3 %) and ordinary concrete without any
fiber (NSC and HSC) (Xiao et al. 2006 with concrete
strength grade of C40–C100) after exposure to elevated
temperatures. The corresponding equations are shown in
Eqs. (2)–(4) as follows.

Fig. 4 Flexural failure modes of HRPC after elevated temperatures.

Fig. 5 Tensile failure modes of HRPC after exposure to elevated temperatures.
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SRPC with steel fiber volume dosage of 1–3 % (Zheng
et al. 2012a):

PRPC with PPF volume dosage of 0.2–0.3 % (Zheng et al.
2012c):

NSC and HSC with concrete strength grade of C40–C100
(Xiao et al. 2006):

ffT
ff

¼ 1� ðT � 20Þ
780

; 20 �C� T � 800 �C;R2 ¼ 0:955

ð4Þ

Through comparative analysis, it is found that the
temperature-induced decay of HRPC and SRPC is almost
the same, whereas the decay of PRPC is significantly more
pronounced. This means that the flexural strength of PRPC
after high temperature is the worst among the three types
RPC. The curve corresponding to NSC/HSC locates at the
bottom, and the curve decline rate is faster than the HSC,
that is the bending performance of HRPC is better than NSC
and HSC. The flexural strength curves of SRPC and PRPC
exhibits a rising process, but the flexural strength decay
curve of HRPC exhibits a linear decrease. The reason is that
when undergoing a relatively low temperature, SRPC and
PRPC are equivalent to experiencing a ‘‘high temperature
curing’’ process, so that the cement hydration reaction is
more fully, and more C–S–H gel is generated, which makes
the internal structure of RPC is more compact, so the flexural
strength curves of SRPC and PRPC has a rising process. For
HRPC, although there is the positive effect of ‘‘high
temperature curing’’ existence, but PP fibers and PP fiber
melting channels not only increase the internal defects of
RPC matrix, but also weaken the bonding properties
between steel fibers and RPC matrix, and this weakening
is considered to be a negative effect. Furthermore, the
bonding properties of steel fiber and matrix present great
effect on the flexural and tensile strength, so the flexural
strength curve of HRPC decreases linearly with increasing
temperature due to the negative effect, as shown in Fig. 6b.

3.3 Direct Tensile Strength
Figure 7 shows the absolute and relative values of the

direct tensile strength for HRPC specimens after exposure to

different temperatures. As seen from Fig. 7a, the same with
flexural strength, the direct tensile strength of HRPC3 with
steel fiber content of 1 % is the minimum, that is steel fibers

obviously improve flexural strength and direct tensile
strength, whereas PPF has little effect on both. After heating

Fig. 6 Flexural strength of hybrid fiber-reinforced RPC after
exposure to elevated temperatures. a Absolute value.
b Relative value.

ffT
ff

¼
0:99þ 0:55 T

1000

� �
; 20 �C� T � 200 �C; R2 ¼ 0:998;

1:47� 2:01 T
1000

� �
þ 0:75 T

1000

� �2
; 200 �C\T � 900 �C; R2 ¼ 0:988

(

ð2Þ

ffT
ff

¼
0:98þ 1:06 T

1000

� �
; 20 �C� T � 300 �C; R2 ¼ 0:999;

3:26� 8:28 T
1000

� �
þ 5:76 T

1000

� �2
; 300 �C\T � 900 �C; R2 ¼ 0:996

(

ð3Þ
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to 20–700 �C, the tensile strength of the three hybrid fiber-
reinforced RPC decreases gradually with increasing tem-
perature, and the residual tensile strength of HRPC1,
HRPC2 and HRPC3 reduces to 30.70, 28.85 and 29.92 % of
the value at room temperature respectively after exposure to
700 �C. It is worth noting that the tensile strength exhibits a
slight increase after 800–900 �C.
For HRPC1, HRPC2 and HRPC3, the relationship

between the relative tensile strength ftT
�
ft and the tempera-

ture T can be expressed as Eq. (5). As shown in Fig. 7b.

where ftT and ft are the tensile strengths of HRPC specimen
after elevated temperatures and at room temperature
respectively (MPa); T is the reference temperature (�C); R2 is
the correlation coefficient to evaluate simulation result.
The curves of the relative tensile strength of SRPC (Zheng

et al. 2012a with steel fiber volume dosage of 1–3 %), PRPC
(Zheng et al. 2012c with PPF volume dosage of 0.1–0.3 %)
and NSC/HSC (EN 1992-1-2: 2004) after exposure to ele-
vated temperatures are also given in Fig. 7b. The corre-
sponding equations are shown in Eqs. (6)–(8) as follows.
SRPC with steel fiber volume dosage of 1–3 % (Zheng

et al. 2012a):

PRPC with PPF volume dosage of 0.1 % * 0.3 %
(Zheng et al. 2012c):

NSC and HSC (EN 1992-1-2: 2004):

ftT
ft

¼ 1; 20 �C� T � 100 �C;
1� T�100

500 ; 100 �C\T � 600 �C

�
ð8Þ

It is found that the decay of HRPC and SRPC is almost the
same, whereas the decay of PRPC is significantly more
pronounced. The same with the flexural strength, the tensile
properties of PRPC after high temperature also is the worst
among the three types RPC. The tensile strength curve of

NSC/HSC locates at the bottom, and its decline rate is faster
than the HSC, that is the tensile performance of HRPC is
better than NSC and HSC, which is the same with the
flexural strength too. After heating to 800–900 �C, the steel
fibers loss strength due to the oxidizing decarbonization, and
they can be broken off gently. The concrete surrounding the
specimen becomes hardening, and the brittleness of RPC
increases. The tensile strength curves of three different types
of HRPC exhibits rebounding.

3.4 Ratio of Flexural Strength to Tensile
Strength
Table 2 shows the average values of ffT/ftT of hybrid fiber-

reinforced RPC in different temperature ranges. As can be
seen from the table, when the temperature is below 700 �C,
the average values of ffT/ftT of HRPC1 are greater than
HRPC2 and HRPC3, and the ratios increase gradually with
the increasing temperature, that is the weakening effect of
high temperature damage on the direct tensile strength is
larger than on the flexural strength. The reason is that after
heating to a temperature not higher than 700 �C, many initial
micro-cracks appear within specimen. When the specimen

being pulled, the entire destroy cross section is in tension
stress state, meanwhile the initial micro-cracks expand and

the effective tension area decreases, which lead to a signif-
icant reduction in tensile strength. Correspondingly, when
the specimen being bended, one side of the destroy cross
section is in tension stress state, but the other side is in
compression stress state, which lead to the initial micro-
cracks of the compression zone shrink under pressure, and
the bending damage flag is the concrete of compression zone
being crushed, so although the flexural strength decreases
but the reduction is lower than the direct tensile strength.

ftT
ft

¼ 1:01� 0:44 T
1000

� �
� 0:78 T

1000

� �2
; 20 �C� T � 700 �C; R2 ¼ 0:997;

0:32þ 4:17 T
1000

� �
; 700 �C\T � 900 �C; R2 ¼ 0:995:

(

ð5Þ

ftT
ft

¼
0:99þ 0:45 T

1000

� �
; 20 �C� T � 120 �C; R2 ¼ 0:953;

1:29� 2:15 T
1000

� �
þ 1:14 T

1000

� �2
; 120 �C\T � 900 �C; R2 ¼ 0:998

(

ð6Þ

ftT
ft

¼
0:93þ 3:25 T

1000

� �
; 20 �C� T � 120 �C; R2 ¼ 0:994;

1:57� 2:04 T
1000

� �
; 120 �C\T � 700 �C; R2 ¼ 0:998;

�0:26þ 0:58 T
1000

� �
; 700 �C\T � 900 �C; R2 ¼ 0:988

8
><

>:
ð7Þ
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After exposure to 800–900 �C, the average ratios corre-
sponding to three kinds of hybrid fiber-reinforced RPC
reduce again because of the hardening concrete makes the
direct tensile strength returning.

4. Analysis of Microstructure

The SEM micrographs of RPC matrix, bonding interface
between steel fibers and matrix, PP fiber and PP fibers melting
channels after exposure to different temperatures are given in

Fig. 8. For temperatures below 200 �C, RPC are equivalent to
experiencing a ‘‘high temperature curing’’ process, so that the
cement hydration reaction is more fully, and more C–S–H gel
is generated, so the internal structure of RPC is more dense,
and the bonding between steel fibers and matrix is more close,
that is why the flexural and tensile strength of SRPC and
PRPC has a rising process in Figs. 6b and 7b.
At room temperature, the bonding interface of

polypropylene fiber (PPF) and RPC matrix is dense, but as
the temperature exceeds the PPF melting point of 165 �C,
the PPF melt and leave interconnecting channels inside the
RPC matrix, meanwhile the PPF melting channels also
weaken the bonding properties between steel fibers and RPC
matrix, which lead to the flexural and tensile strength of
HRPC decreases linearly. The interconnecting PPF melting
channels also provide channels for steam overflowing, that is
why the incorporation of PPF can inhibit the spalling of
concrete (Kalifa et al. 2001).
When the temperature is higher than 400 �C, the internal

structure of RPC matrix becomes loose, and numbers of
pores appear. The cracks along the bonding interface
between steel fibers and matrix begin to expand, and the
cracks across the melting channel of PPF begin to form. That
is why the strength of RPC decreases gradually with
increasing temperature. After heating to 800 �C, the internal
structure resembles a honeycomb, and a number of pores
appear. The interface between steel fibers and RPC matrix
shows some debonding, to the detriment of the tensile
properties.

5. Conclusions

Through experimental research on the hybrid fiber-rein-
forced RPC after heating for temperatures up to 900 �C, the
following conclusions can be drawn.

(1) With the steel fiber content increasing, the residual
flexural and direct tensile strength of hybrid fiber-
reinforced RPC improves significantly. With increasing
temperature, the flexural and direct tensile strength
substantially decreases linearly.

(2) Steel fibers can effectively improve the direct tensile
properties of RPC after high temperature. Polypropy-

Fig. 7 Tensile strength of hybrid fiber-reinforced RPC after
exposure to elevated temperatures. a Absolute value.
b Relative value.

Table 2 Average values of ffT/ftT of HRPC in different temperature ranges.

Temperature Range (�C) ffT/ftT

HRPC1 HRPC2 HRPC3

20–300 4.13 3.59 3.54

400–600 4.02 3.73 3.05

700 5.12 4.66 4.11

800 3.67 4.01 3.31

900 2.67 2.84 2.36
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lene fibers have an adverse effect on the mechanical
strength of RPC exposed to a lower temperature, but
can improve the strength of RPC exposed to a higher
temperature.

(3) Based on the experimental results, equations are
established to express the decay of the flexural and
tensile strength with increasing temperature. Compared
with normal-strength and high-strength concrete, the
hybrid fiber-reinforced RPC has excellent capacity in
resistance to high temperature.

(4) With increasing temperature, the microstructure of
RPC deteriorates, and the bonding interface between
steel fibers and RPC matrix becomes loose gradually.
The PPF melt and leave interconnecting channels
inside RPC matrix. The basic reason for the degrada-
tion of mechanical properties of RPC is the deteriora-
tion microstructure.
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