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Abstract 

A new plastic–damage constitutive model based on the combination of damage mechanics and classical plastic 
theory was developed to simulate the failure of concrete. In order to explain different material behaviors of concrete 
under tensile and compressive loadings, the plastic yield criterion, the different kinematic hardening rule for tension 
and compressive and the isotropic flow rule were established in the effective stress space. Meanwhile, two different 
empirical damage evolution equations were adopted: one for compression and the other for tension. A multi‑axial 
damage influence factor was also introduced to fully describe the anisotropic damage of concrete. Finally, the model 
response was compared with a wide range of experiment results. The results showed that the model could well 
describe the nonlinear behavior of concrete in a complex stress state.
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1 Introduction
This study mainly aimed to formulate a new plastic–dam-
age constitutive model for concrete as completely and as 
simply as possible.

Existing plastic–damage models (PDMs) of concrete 
are usually based on sound thermodynamic principles 
(Hesebeck 2001; Mahnken 2002; Voyiadjis and Deliktas 
2000; Cicekli et al. 2007; Taqieddin et al. 2012; Voyiadjis 
et  al. 2008; Abu Al-Rub and Kim 2010; Wu et  al. 2006; 
Liu et  al. 2013; Mazars and Pijaudier-Cabot 1989; Lee 
and Fenves 1998). The thermodynamics-based damage 
model conforms to rigorous mechanical inference and 
has a solid theoretical foundation, therefore, it is called 
the theoretical plastic–damage model. Similar to the 
traditional plastic mechanics theory, a damage criteria 
and a damage dissipation potential function are needed 
to set up these models. However, it is hard to define the 

damage dissipation potential. In order to simplify the 
derivation of the model, some authors abandoned the 
thermodynamics-based damage criteria and turned to 
the empirically defined ones. One popular pattern of this 
kind of PDMs is that the models rely on the combina-
tion of stress-based plasticity formulated in the effective 
stress space with a strain-based damage model combined 
which can be obtained by empirical observations. These 
works (Grassl and Jir Sek 2006a, b; Grassl et  al. 2013; 
Kitzig and Häußler-Combe 2011; Murakami 2012; Valen-
tini and Hofstetter 2013) belong to this group. The mod-
els can be called the empirical plastic–damage models. 
As the damage model is based on strain, it may be eas-
ily implemented into commonly used strain-driven finite 
element procedures and the calculation of damage vari-
able can be implemented explicitly. Thus, there are robust 
algorithms for FEM.

However, given the complex anisotropic damage in 
concrete, some authors adopted a single damage vari-
able for both tension and compression (Grassl and Jir 
Sek 2006a, b; Yu et al. 2010; Kitzig and Häußler-Combe 
2011; Valentini and Hofstetter 2013). This is sufficient for 
monotonic loading with unloading, but it is not suitable 
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for modeling the transition from tensile to compressive 
failure (i.e. the unilateral effect and elastic stiffness recov-
ery under cyclic loading). In order to overcome this 
limitation, other authors adopted two isotropic damage 
variables: one for tension and the other for compres-
sion (Grassl et al. 2013; Murakami 2012). In spite of the 
satisfactory results obtained under the pure tension and 
pure compression stress states, the anisotropic damage 
of concrete and the interaction effect of damage in the 
orthogonal direction under multi-axial stress states were 
usually neglected in these models. But in fact, the stress-
based damage evolution function can also be adopted to 
formulate the anisotropic constitutive models for quasi-
brittle materials which are typical examples (see e.g. Faria 
et  al. 1998; Berto et  al. 2014). However, in some cases, 
although axial stress is compression, the corresponding 
axial strain may be tension or compression. Tensile strain 
may lead to tensile damage, and in this case, if the stress 
state is adopted to judge the damage state, the tensile 
damage may be ignored. Therefore, it is a controversial 
issue to define that the damage state is compression or 
tension through the stress state. Though it is also an open 
question to take strain as a state variable, strain is still 
used in many models. Moreover, as described by Chal-
lamel et al. (2005), damage is mainly a strain-controlled 
phenomenon. In this paper, we tended to use strain as a 
state variable to judge the damage state and to establish 
the damage evolution function.

With inspirations from all the previous works and 
understandings mentioned above, this paper presented a 
new PDM for concrete with two different empirical and 
strain-based damage evolution equations: one for tensile 
damage and the other for compressive damage. Under 
multi-axial stress states, the anisotropic damage and the 
interaction effect of damage in the orthogonal direction 
were considered and a multi-axial damage influence fac-
tor was introduced to extend the uniaxial damage evo-
lution equation to a multi-axial form. As shown by Abu 
Al-Rub and Voyiadjis (2003), Cicekli et  al. (2007) and 
Abu Al-Rub and Kim (2010), the plastic part of coupled 
plastic–damage model formulated in the effective space 
was numerically more stable and attractive. Thus in this 
paper, the plastic part of the proposed model was estab-
lished in the effective stress space. Meanwhile, in order 
to simplify the derivation of constitutive equations and to 
bring advantages to the numerical implementation, the 
strain equivalence hypothesis was adopted in this paper. 
In addition, for the PDMs, the calibration of the mate-
rial parameters usually relies on monotonic stress–strain 
experimental curves, but this results in a non-unique 
determination of the material parameters. Therefore, 
a simple and effective method which needs the uniax-
ial cyclic loading stress–strain experimental curves to 

identify the material parameters was proposed by Abu 
Al-Rub and Kim (2010). However, since the uniaxial 
cyclic tests are relatively complex, the stress–strain data 
is usually obtained by uniaxial monotonic test in actual 
engineering. Therefore, the method proposed by Abu 
Al-Rub and Kim (2010) to determine the material param-
eters may cause the lack of uniaxial cyclic loading stress–
strain data. In order to overcome this limitation, a new 
method for the calibration of the material parameters 
was proposed in this paper.

Finally, a new empirical plastic and anisotropic dam-
age model for plain concrete was formulated here. In 
the model, different responses of concrete under tension 
and compression were considered, including the effect of 
stiffness degradation, the interaction effects of damage in 
the orthogonal direction and the stiffness recovery due to 
crack closure in cyclic loading. To demonstrate the capa-
bility of the proposed model, the model response was 
compared with a wide range of experimental results.

2  Theoretical Basics of Plastic‑Damage Model
2.1  Damage Part
2.1.1  Definition of Damage Variable
According to Rabotnov (1968), the relation between the 
nominal stress and the effective stress can be expressed 
as:

where

where A , AD and Ā respectively denote the whole area, 
the total damage area and the effective area. d denotes 
the isotropic damage variable which varies from 0 to 1. 
The sign ( © ) denotes the physical quantity of the effec-
tive configuration corresponding to the nominal configu-
ration ( ©).

Similarly, if the isotropic damage model is adopted 
under multi-axial stress state, the relation between the 
effective stress tensor σ̄ and the nominal stress tensor σ 
can be expressed as follows:

By cutting out the section to determine the amount of 
holes, cracks and to accumulate the amount, the dam-
age density of material can be directly determined, i.e. 
the damage variable d can be determined by Eq.  (2). 
However, it is very difficult to put it into practice. In 
order to indirectly determine the damage density and 
simplify the derivation of constitutive equations, the 
strain equivalence hypothesis was proposed by Lemaitre 

(1)σ̄ =
σ

1− d

(2)d =
A− Ā

A
=

AD

A

(3)σ̄ = (1− d)−1
σ



Page 3 of 18Jiao et al. Int J Concr Struct Mater           (2019) 13:57 

and Chanboche (1974). Based on the strain equivalence 
hypothesis, the total nominal strain tensor ε can be set 
equal to the corresponding effective strain tensor ε̄ , 
which can be decomposed into an elastic strain εe(= ε̄

e ) 
and a plastic strain εp ( = ε̄

p ), such that:

It should be noted that the original formulation of the 
strain equivalence hypothesis only applies to the elastic 
strain, i.e. one can only assume that the nominal elastic 
strain tensor εe is equal to the corresponding effective 
elastic strain tensor ε̄e . However, as described by Abu 
Al-Rub and Voyiadjis (2003) and Cicekli et  al. (2007), 
the additional permanent strain caused by damage in 
the nominal configuration was minimal and could be 
neglected. In this paper, the nominal plastic strain tensor 
ε
p was assumed to equal the corresponding effective plas-

tic strain tensor ε̄p . For simplicity, in this form, the strain 
equivalence hypothesis was used in these works, see e.g. 
Lee and Fenves (1998), Cicekli et  al. (2007); Wu et  al. 
(2006), Abu Al-Rub and Kim (2010), Liu et  al. (2013), 
Grassl and Jir Sek (2006a), Grassl et al. (2013), Murakami 
(2012), Faria et al. (1998) and Al-Rub et al. (2013).

Based on Eqs. (3), (4) and the generalized Hook’s law, 
the stress–strain relationship can be expressed as:

where E is the fourth-order damaged elastic stiffness ten-
sor, which is a function of the damage variable d and E 
is the fourth-order initial undamaged elastic stiffness ten-
sor. For isotropic linear-elastic material, E is given by:

where G = Ē0/2(1+ ν̄) and K = Ē0/3(1− 2ν̄) are 
respectively the effective shear and bulk moduli with Ē0 
being the initial Young’s modulus and ν̄ being the Pois-
son’s ration.

Based on Eq. (5), the indirect form of damage vari-
able expressed by stiffness degradation can be shown as 
follows:

For the case of one-dimension, the above equation can be 
rewritten as:

where E is the damaged Young’s modulus.
It is assumed in isotropic damage that the strength and 

stiffness of the concrete material are equally degraded 

(4)ε = ε
e + ε

p = ε̄
e + ε̄

p = ε̄

(5)

σ = E : εe = E : (ε − ε
P) = (1− d)Ē : (ε − ε

P)

= (1− d)Ē : ε̄e = (1− d)σ̄

(6)Eijkl = 2Gδikδjl +

(

K −
2

3
G

)

δijδkl

(7)d = 1− E : Ē
−1

(8)d = 1−
E

Ē0

in different directions upon damage evolution, but this 
is not the fact. In order to capture the load-induced ani-
sotropy of concrete, the second-order symmetric damage 
tensor ωij was adopted in this paper. Matrix representa-
tion of the tensor ωij in the principal axes is as follows:

where ω̂i, i = 1, 2, 3 represents the eigenvalues and can 
be expressed as:

In the subsequent development, the superscript hat 
symbol (•̂) denotes a principal value of (•).
Ei is an unknown quantity to be determined by the 

strain-based damage evolution function.

2.1.2  Damage Evolution Function
Since damage is an irreversible process, in this paper, the 
damage evolution function was described by the damage 
loading equations, loading–unloading conditions and the 
evolution laws for damage variables. In addition, given 
that the damage mechanisms of concrete behave differ-
ently in tension and compression, to better describe the 
different damage mechanisms under tensile and com-
pressive loadings, two different empirical and strain-
based damage evolution equations were adopted in this 
paper. Hereafter, the superscripts “+” and “−” respec-
tively denote the tensile and compressive entities.

1. Uniaxial damage evolution function
The uniaxial damage (i.e. isotropic damage) load-

ing functions and loading–unloading conditions can be 
expressed as:

where f ±d  is the axial loading function, ε̂±( ˆ̄σ±) is the 
axial strain and k±d  is the axial damage-driven history 
variable which is used to store the maximum value that 
the axial strain can reach. Therefore, the axial damage-
driven history variable k±d  never decreases even when the 

(9)
�

ωij

�

=





ω̂1

ω̂2

ω̂3





(10)ω̂i = 1−
Ei

Ē0
, i = 1, 2, 3

(11)f ±d = βε̂±( ˆ̄σ±)− k±d

(12)k±d = βε̂±( ˆ̄σ±),β =

{

1 if ε̂+ ≥ 0
−1 if ε̂− < 0

(13)f ±d ≤ 0, k̇±d ≥ 0, k̇±d f
±
d = 0
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corresponding axial strain ε̂±( ˆ̄σ±) decreases in the load-
ing process.

The significance of damage loading functions and load-
ing–unloading conditions can be simply interpreted as: if 
f ±d < 0 and the material is in the cyclic loading or elastic 
unloading state, damage evolution cannot occur because 
the condition in Eq. (13) implies that k̇±d = 0 . If f ±d = 0 , 
the material can exhibit damage evolution characterized 
by k̇±d > 0.

Since both damage and plastic deformations lead to the 
nonlinear response of concrete, both of the two deforma-
tions should be taken into account. For uniaxial tensile 
and compressive loading, ˆ̄σ+ and ˆ̄σ− are given as (Lee 
and Fenves 1998)

where ε̂±p is the axial plastic strain which can be 
expressed by ε̂±p =

∫ t
0
ˆ̇ε±pdt.

In this paper, the Guo-Zhang model recommended by 
code for design of concrete structure (GB50010-2002) 
(Ministry of Construction  2002) was adopted to express 
the stress–strain relation of concrete under the uniaxial 
stress state. For uniaxial tensile loading, the relation 
between stress and strain can be expressed as follows:

where x̂+ = ε̂+/ε+0  , αt = 0.312(f +0 )2 , f +0  is the uniaxial 
tensile strength and ε+0  is the strain corresponding to f +0  . 
ε+0  and Â+ can be obtained by the following expression:

where αt is the material parameter and can be obtained 
by the following equation:

From Eq.  (16), it is known that f +0  is a cut-off point 
and before the point, material is linear-elastic and after 
the point, material shows nonlinear feature, i.e. the mate-
rial response seems to be weakened as the plastic strain 
increases because the elastic stiffness of the material is 
degraded due to damage evolution after the cut-off point 
(see Fig. 1a).

(14)
σ̂+ = (1− d+) ˆ̄σ+ = (1− d+)Ē0ε̂

+e

= (1− d+)Ē0(ε̂
+ − ε̂+p)

(15)
σ̂− = (1− d−) ˆ̄σ− = (1− d−)Ē0ε̂

−e

= (1− d−)Ē0(ε̂
− − ε̂−p)

(16)

{

σ̂+ = f +0
(

1.2x̂+ − 0.2x̂+6
)

if x̂+ ≤ 1

σ̂+ = f +0 Â
+

if x̂+ > 1

(17)
ε+0 =

(

f +0
)0.54

× 65× 10−6,

Â+ = x̂+/
(

αt
(

x̂+ − 1
)1.7

+ x̂+
)

(18)αt = 0.312(f +0 )2

Setting Eq. (14) equal to Eq. (16) and using k+d  to 
replace ε̂+ in Eqs. (14) and (16), the solving for d+ will be:

For uniaxial compressive loading, the relation between 
stress and strain can be expressed as follows:

(19)d+ =







0 if k+d ≤ ε+0

1−
ε+0 Â

+

(k+d −ε̂+p)
if k+d > ε+0

(20)







σ̂− =
�

Ē0ε
−
u

�

x̂− if x̂− ≤ 0.211

σ̂− = f −u B̂− if 0.211 ≤ x̂− ≤ 1

σ̂− = f −u Ĉ− if x̂− > 1

a

b

ε+p ε+e ε+

E0

(1-φ+)E0

f 0+=f u+

E0

σ+

σ+

σ+

ε-p ε-e ε-

f 0-

E0

E0

f u-

σ-

σ-

σ-

(1-φ-)E0

Fig. 1 Concrete behavior under uniaxial (a) tension and (b) 
compression.



Page 5 of 18Jiao et al. Int J Concr Struct Mater           (2019) 13:57 

where x̂− = ε̂−/ε−u  , f −u  is the uniaxial compressive 
strength and ε−u  is the strain corresponding to f −u  . ε−u  , B̂− 
and Ĉ− can be expressed as:

where αa and αd are the material parameters which can 
be obtained by the following equations:

From Fig. 1b, it can be seen that damage and plasticity 
are caused when the applied stress reaches f −0 = 0.4f −u  
under uniaxial compressive loading. Therefore, using k−d  
to replace ε̂− in Eq. (15), setting Eq. (15) equal to Eq. (20) 
and solving for d− , the following can be obtained:

where |•| is a symbol of absolute value.

2. Multi-axial damage evolution functioρn
Although uniaxial damage evolution law can reflect the 

general rule of damage evolution under uniaxial stress 
state, the mechanical characteristics and damage evolu-
tion of concrete are greatly different under multi-axial 
stress states. And for multi-axial stress states, a more 
advanced multi-axial damage evolution law is required.

A lot of uniaxial loading experiments of concrete show 
that the propagation direction of cracks is perpendicu-
lar to the stress direction under uniaxial tensile loading 
and cracks are parallel to the loading direction under 
compressive loading. Therefore, for uniaxial tensile load-
ing, the damage evolution direction is consistent with 
the stress direction, which can be called “direct damage”. 
But for uniaxial compressive loading, the damage evo-
lution direction is vertical to the stress direction, which 
can be called “indirect damage”. According to the experi-
ment results of these works (Peng et  al. 1997; Kupfer 
et al. 1969; Gao et al. 2001), the compressive strength of 
concrete in biaxial compressive states was significantly 
higher than the strength in uniaxial compressive state; 
under biaxial tensile–compressive states, the tensile 
strength of concrete in one direction obviously decreased 

(21)

ε−u =

(

700+ 172

√

f −u

)

× 10−6,

B̂− = αax̂
− + (3− 2αa)x̂

−2 + (αa − 2)x̂−3,

Ĉ− = x̂−/
(

αd
(

x̂− − 1
)2

+ x̂−
)

(22)
αa = 2.4 − 0.0125 f −u ,

αd = 0.157
(

f −u
)0.785

− 0.905

(23)

d− =



















0 if 0 ≤ k−d <
�

�0.211ε−u
�

�

1−
|f −u |B̂

−

Ē0(k
−
d −|ε̂−p|)

if
�

�0.211ε−u
�

� ≤ k−d <
�

�ε−u

�

�

1−
|f −u |Ĉ

−

Ē0(k
−
d −|ε̂−p|)

if
�

�ε−u

�

� ≤ k−d

with the increase of compressive stress (or strain) in the 
orthogonal direction, and the effect on the compressive 
strength in one direction due to the tensile stress (or 
strain) in the orthogonal direction was not very obvi-
ous. However, under biaxial tensile states, the variation 
of the tensile strength caused by tensile stress (or strain) 
in the orthogonal direction was very small. Based on 
these experiment results, it was assumed that: (1) com-
pressive strain affected the tensile or compressive dam-
age in the orthogonal direction; (2) tensile strain did not 
affect the damage in the orthogonal direction. According 
to this assumption, a multi-axial damage influence factor 
was introduced to extend the uniaxial damage evolution 
equation to a multi-axial form.

The multi-axial damage loading functions and loading–
unloading conditions can be expressed as:

where f (i)d  is the axial loading function, ε̂i( ˆ̄σi) is the axial 
strain, k(i)d  is the axial damage-driven history variable and 
i = 1, 2, 3.

As it is shown in Fig. 2, assuming that the total damage 
in direction 1 is made up of many micro circular crack 
areas ÃD

1j , the total damage area in direction 1 can be 
expressed as:

where A1 is the whole cross-sectional area and Ā1 is the 
effective load-carrying area.

Based on Eq.  (2), neglecting the effect of strain in the 
orthogonal direction, the damage variable in direction 1 
can be expressed as d1 = ÃD

1 /A1.
According to the linear-elastic fracture mechanics 

theory, in an infinite medium, including elliptical micro-
cracks, there will be shear stress at the crack tip under 

(24)f
(i)
d = βiε̂i( ˆ̄σi)− k

(i)
d

(25)k
(i)
d = βiε̂i( ˆ̄σi),βi =

{

1 if ε̂i ≥ 0
−1 if ε̂i < 0

(26)f
(i)
d ≤ 0, k̇

(i)
d ≥ 0, k̇

(i)
d f

(i)
d = 0

(27)ÃD
1 =

∑

ÃD
1j = A1 − Ā1

AD
1j

Direction1

Fig. 2 Micro‑defects of material in direction 1.
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uniaxial compressive loading and this will make the crack 
extend. It can be noted from Fig. 3 that if direction 1 is 
tensile strain and direction 2 is compressive strain (i.e. 
tension–compression combination), new crack exten-
sion will occur under the effect of compressive strain, and 
this will lead to the increase of the total damage area in 
direction 1 and will produce new damage. If setting the 
diameter of a damaged region ÃD

1j in direction 1 at load-
ing step n as l(n) and the compressive strain in direction 2 
as ε̂2(n) , with the effect of compressive strain ε̂2(n) taken 
into account, the diameter of the damaged region ÃD

1j 
will reduce from l(n) to l(n) (1+ ε̂2(n)) . Based on the geo-
metrical relationship of Fig. 4a, the crack width w(n) can 
be expressed as follows:

with ε̂2(n) < 0.
Furthermore, it can be noticed from Fig. 4a that wc is a 

critical crack width. With the increase of the compressive 
strain ε̂2(n) , the diameter of the damaged region ÃD

1j will 
further decrease from l(n) (1+ ε̂2(n)) to l(n) (1+ ε̂2(n+1)) . 
When the opening crack width w(n) reaches wc , new crack 
propagation will occur. At this moment, it can be seen 
from Fig. 4b that the length of the crack will extend from 
l(n)(1+ ε̂2(n+1)) to l′(n+1) . Based on the geometrical rela-
tionship of Fig. 4b, w(n+1) can be expressed as:

with ε̂2(n+1) < 0.
And the extended area of the damage region ÃD

1j can be 
derived as:

where AD
1j is the extended area of the damage region ÃD

1j.
Based on Eq.  (30), the extended total damage area in 

direction 1 can be expressed as:

(28)w(n) =

√

−ε̂2(n)(2+ ε̂2(n))l(n)

(29)w(n+1) = wc =

√

−ε̂2(n+1)(2+ ε̂2(n+1))l(n)

(30)AD
1j = ÃD

1j

w2
(n+1)

(

ε̂2(n+1)

)

w2
(n)

(

ε̂2(n)
) (ε̂2(n+1) < 0)

where AD
1  is the total damage area in direction 1 when the 

effect of ε̂2 is considered and ÃD
1  is the total damage area 

in direction 1 when the effect of ε̂2 is neglected.
According to the above definition of damage variable 

and with the effect of compressive strain ε̂2 considered, 
the new damage ω̂1 in direction 1 at step n+ 1 can be 
derived as:

where d1(n+1)

(

ε̂1(n+1)

)

 is the damage in direction 1 at 
step n+ 1 without considering the effect of ε̂2 and χ2(n+1) 
is the tensile damage influence factor caused by compres-
sive strain in direction 2 at step n+ 1.

(31)

AD
1 =

∑

AD
1j =

w2
(n+1)

(

ε̂2(n+1)

)

w2
(n)

(

ε̂2(n)
)

∑

ÃD
1j

=
w2
(n+1)

(

ε̂2(n+1)

)

w2
(n)

(

ε̂2(n)
) ÃD

1 (ε̂2(n+1) < 0)

(32)

ω̂1(n+1) =
AD
1

A1
= d1(n+1)

(

ε̂1(n+1)

)w2
(n+1)

(

ε̂2(n+1)

)

w2
(n)

(

ε̂2(n)
)

= d1(n+1)

(

ε̂1(n+1)

)

χ2(n+1) (ε̂2(n+1) < 0)

l

ε2

Direction 1

Direction 2

Crack

Crack

l(1+ε2),
ε2<0

Fig. 3 Sketches of crack opening under compressive strain in 
direction 2.

a

b

l(n)/2

l(n)(1+ε2(n))/2

wc

w(n)

l(n)(1+ε2(n+1))/2

l'(n+1)

wc

l(n)(1+ε2(n+1))/2

l(n)/2

Fig. 4 The geometrical relationship between crack width and length. 
a Before crack propagation and b after crack propagation.



Page 7 of 18Jiao et al. Int J Concr Struct Mater           (2019) 13:57 

Similarly, if direction 3 is also compressive strain, the 
damage in direction 1 can be written as follows:

As mentioned earlier, it is difficult to deter-
mine the damage variable by Eq.  (2) (i.e. 
di = (Ai − Āi)/Ai(i = 1, 2, 3) ), thus, to determine the 
damage density indirectly, the strain equivalence hypoth-
esis was proposed by Lemaitre and Chanboche (1974). 
This means that Eq. (2) is equivalent to Eq. (8), such that:

It should be noted that the uniaxial tensile damage 
evolution equation  (19) is derived on the basis of the 
strain equivalence hypothesis (i.e. d = 1− E/Ē0 ). Based 
on Eqs. (33, 19) can be extended to a multi-axial form as 
follows:

with i, j = 1, 2, 3 , and χj can be expressed as:

When both direction 1 and direction 2 are compres-
sive strain, the area of damage region in direction 1 will 
show a shrinking tendency due to the effect of compres-
sive strain in direction 2, and the damage density in direc-
tion 1 will decrease. Therefore, a multi-axial compressive 
damage influence factor χ ′

i for compression-compression 
combination should be defined. Since the reduction of the 
damage density in direction 1 caused by the compressive 
strain in direction 2 was not very obvious, after repeated 
trials, the multi-axial compressive damage influence fac-
tor χ ′

i was assumed as a constant and 0.8 was used in the 
study. Substituting χ ′

i into Eq.  (23), the multi-axial com-
pressive damage evolution equation is shown as follows:

(33)
ω̂1(n+1) = d1(n+1)

(

ε̂1(n+1)

)

χ2(n+1) χ3(n+1)

× (ε̂2(n+1) < 0, ε̂3(n+1) < 0)

(34)di =
Ai − Āi

Ai
=

ÃD
i

Ai
= 1−

Ei

Ē0

(35)

ω̂+
i =







0 if k
+(i)
d ≤ ε+0

�

1−
ε+0 Â

+
i

(k
+(i)
d −ε̂

+p
i )

�

3
Π
j=1

χj if k
+(i)
d > ε+0

(36)χj =
−
(

ε̂j +�ε̂j
)

(2+ ε̂j +�ε̂j)

−ε̂j(2+ ε̂j)

(

ε̂j < 0
)

.

(37)ω̂−
i =































0 if 0 ≤ k
−(i)
d <

�

�0.211ε−u
�

�

�

1−
|f −u |B̂

−
i

Ē0(k
−(i)
d −

�

�

�
ε̂
−p
i

�

�

�
)

�

3
Π
j=1

χ
′

j

χ
′
i

if
�

�0.211ε−u
�

� ≤ k
−(i)
d <

�

�ε−u

�

�

�

1−
|f −u |Ĉ

−
i

Ē0(k
−(i)
d −

�

�

�
ε̂
−p
i

�

�

�
)

�

3
Π
j=1

χ
′

j

χ
′
i

if
�

�ε−u

�

� ≤ k
−(i)
d

with i, j = 1, 2, 3.

2.1.3  Stiffness Degradation

1. Definition of Damaged Elastic Stiffness with Cyclic 
Loading Neglected

The degradation of stiffness caused by damage occurs 
in both tension and compression and becomes more 
significant as the strain increases. Since the anisotropic 
damage tensor was adopted in this paper, Eq. (3) can be 
extended as:

As described by Murakami (2012), the effective stress 
tensor obtained by Eq.  (38) was asymmetric. Since it is 
usually inconvenient to use the asymmetric effective 
stress tensor in the formulation of constitutive and evo-
lution equations, several symmetrization methods were 
proposed by many authors. The method proposed by 
Cordebois and Sidoroff (1982) is used frequently (Carol 
et  al. 2001; Prochtel and Häußler-Combe 2008; Mozaf-
fari and Voyiadjis 2015; Murakami 2012). By this method, 
Eq. (38) can be rewritten as follows:

or

where

In the principal coordinate system of damage ω with 
the Voigt notations, the fourth-order damage-effect ten-
sor M can be expressed as the following “diagonal matrix 
form”:

where φi = 1− ω̂i with ω̂i(i = 1, 2, 3) being the principal 
damage variable.

(38)σ̄ = (I − ω)−1
σ .

(39)σ̄ = (I − ω)−1/2
σ (I − ω)−1/2

(40)σ = M(ω) : σ̄

(41)
Mijkl =

1

2

[

(δik − ωik)
1/2(δjl − ωjl)

1/2

+ (δil − ωil)
1/2(δjk − ωjk)

1/2
]

.

(42)

[

M(ω̂)
]

= dig
[

φ1 φ2 φ3
√

φ2φ3
√

φ1φ3
√

φ1φ2

]
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As described by Chow and Wang (1987), since the 
fourth-order damage-effect tensor Mijkl contained 
more individual components and the elements in a 
fourth-order tensor were difficult if not impossible to 
be measured, the simplification became necessary for 
practical reasons. Zhu and Cescotto (1995), Chow and 
Wang (1987) and Zhang et al. (2001) used the simplified 
damage effect tensor in Eq. (42) to establish the relation 
between the effective and nominal stress tensors, and the 
matrix representation of the nominal stress tensor can be 
written as:

where

and

with Ei = φiĒ0 , Eij =
√

φiφj Ē0
(

i, j = 1, 2, 3
)

 and 
̟ = 1/(1+ ν̄)(1− 2ν̄).

Combining Eqs. (14), (15) and (43)–(45), it can be seen 
that the principal nominal stress can be expressed as:

When a single damage variable for both tension and 
compression is adopted, the pattern of stiffness degrada-
tion defined in Eq. (45) will be applicable, e.g. Kitzig and 
Häußler-Combe (2011). However, if two different dam-
age variables for tension and compression are adopted, 
in some cases, it may be inappropriate to establish the 
constitutive relationship. Taking the true tri-axial com-
pressive test reported by Van Mier (1984) as an example, 
when the stress ratio was σ̂1/σ̂2/σ̂3 = −1/− 0.1/− 0.05 , 
only ε̂1 was compressive strain and both ε̂2 and ε̂3 
were tensile strains. In this case, the negative and 
positive principal nominal stress components were 
σ̂
− =

(

σ̂−
1 , 0.1σ̂−

1 , 0.05σ̂−
1

)T and σ̂
+ = (0, 0, 0)T . And 

the corresponding negative and positive principal strain 
components can be written as ε̂− =

(

ε̂−1 , 0, 0
)T and 

ε̂
+ =

(

0, ε̂+2 , ε̂
+
3

)T . By using the damaged elastic stiffness 

(43){σ } = [E]
{

ε − εp
}

= [E]
{

εe
}

(44)
{σ } =

[

σ11 σ22 σ33 σ23 σ13 σ12
]T

{ε} =
[

ε11 ε22 ε33 ε23 ε13 ε12
]T

(45)[E] = ̟ ·

















E1(1− ν̄) E1ν̄ E1ν̄ 0 0 0
E2ν̄ E2(1− ν̄) E2ν̄ 0 0 0
E3ν̄ E3ν̄ E3(1− ν̄) 0 0 0

0 0 0 E23(1−2ν̄)
2 0 0

0 0 0 0 E13(1−2ν̄)
2 0

0 0 0 0 0 E12(1−2ν̄)
2

















(46)σ̂i = φi

(

K̄ +
4

3
Ḡ

)

ε̂ei + φi

(

K̄ −
2

3
Ḡ

) 3
∑

j=1

ε̂ej .

tensor defined in Eq.  (45), the principal nominal stress 
vector can be expressed as:

Obviously, when a single damage variable for both ten-
sion and compression is adopted, the above equation is 
reasonable. But when two different damage variables are 
adopted, Eq. (47) can be rewritten as:

It can be seen that the mixing term φ+
(

ε̂+
)

· ˆ̄σ− in 
Eq.  (48) is in conflict with Eqs.  (14), (15) and it cannot 
reflect the different damage mechanisms under tensile 

and compressive loadings. In order to eliminate the mix-
ing term and to include the unilateral effect, the spectral 
decomposition technique can be used to separate the 
stress or strain tensor into positive and negative compo-
nents. If the spectral decomposition of the stress tensor 
is performed, based on the assumption that the expres-
sion in Eq. (40) is valid for both tension and compression, 
such that:

Then the total nominal stress tensor can be expressed 
as:

And Eq. (47) can be rewritten as:

(47)







σ̂1
σ̂2
σ̂3







=





φ1
�

ε̂1
�

φ2
�

ε̂2
�

φ3
�

ε̂3
�











ˆ̄σ1
ˆ̄σ2
ˆ̄σ3







.

(48)







σ̂−
1

σ̂−
2

σ̂−
3







=





φ−
1

�

ε̂−1

�

φ+
2

�

ε̂+2

�

φ+
3

�

ε̂+3

�











ˆ̄σ−
1
ˆ̄σ−
2
ˆ̄σ−
3







.

(49)σ
+ = M+

(

ω+
)

: σ̄+, σ
− = M−

(

ω−
)

: σ̄−.

(50)σ = M+
(

ω+
)

: σ̄+ +M−
(

ω−
)

: σ̄−.

(51)







σ̂1
σ̂2
σ̂3







=





1 0 0

0 φ+
2

�

ε̂+2

�

0

0 0 φ+
3

�

ε̂+3

�











0
0
0







+





φ−
1

�

ε̂−1

�

0 0
0 1 0
0 0 1











ˆ̄σ−
1
ˆ̄σ−
2
ˆ̄σ−
3







.
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From the above equation, it can be seen that the mix-
ing term is eliminated, but a new issue is introduced (i.e. 
σ̂2 =

ˆ̄σ−
2  and σ̂3 = ˆ̄σ−

3  ). Obviously, due to the character-
istics of the damage evolution equations defined in this 
paper, the spectral decomposition of the stress tensor 
is unsuitable for this study. Therefore, the strain tensor 
will be separated into positive and negative components 
in the paper. By using the spectral decomposition tech-
nique, the following relation can be obtained:

where Iijkl = P+
ijkl + P−

ijkl is the fourth identity tensor and

where H(x) is the Heaviside step function ( H(x) = 1 for 
x > 0 and H(x) = 0 for x < 0 ), ε̂(k) is the kth principal 
strain of ε and n(k)i  is the kth corresponding unit principal 
direction.

Since the normalized eigenvector of the elastic tensor is 
identical to the normalized eigenvector of the total strain 
tensor, the positive and negative parts of the elastic strain 
tensor can be expressed as:

Therefore, the elastic strain tensor can be expressed as:

Based on Eqs.  (5) and (54), the positive and negative 
effective stress tensors can be expressed as follows:

Based on Eq. (40), it is shown that E = M : Ē . Since M 
is a function of ε , the positive and negative nominal stress 
tensors can be expressed as follows:

Then, the nominal stress tensor can be expressed as:

(52)ε+ij = P+
ijklεkl , ε−ij = (Iijkl − P+

ijkl)εkl = P−
ijklεkl

(53)P+
ijkl =

3
∑

k=1

H(ε̂(k))n
(k)
i n

(k)
j n

(k)
k n

(k)
l

(54)

{

ε
+e = P

+ : εe = P
+ :

(

ε − ε
p
)

ε
−e = P

− : εe = P
− :

(

ε − ε
p
) .

(55)
ε
e = I : εe =

(

P
+ + I − P

+
)

: εe

= P
+ : εe + P

− : εe = ε
+e + ε

−e
.

(56)

{

σ̄
+ = Ē : P+ : (ε − ε

p) = Ē : ε+e

σ̄
− = Ē : P− : (ε − ε

p) = Ē : ε−e

(57)















σ
+ =M

+
�

ε
+
�

: σ̄+ = M
+
�

ε
+
�

: Ē : ε+e

= E
+
�

ε
+
�

: ε+e = E
+
�

ε
+
�

: P+ : (ε − ε
p)

σ
− =M

−
�

ε
−
�

: σ̄− = M
−
�

ε
−
�

: Ē : ε−e

= E
−
�

ε
−
�

: ε−e = E
−
�

ε
−
�

: P− : (ε − ε
p)

.

(58)
σ = σ

+ + σ
− = E

+
(

ε
+
)

: ε+e + E
−
(

ε
−
)

: ε−e.

In order to make it easy to write program, the above 
equation in matrix form can be written as:

with 
[

E±
(

ε±
)]

 being the positive and negative dam-
aged elastic stiffness matrixes which can be obtained by 
Eq. (45).

By the above method, Eq. (47) can be then rewritten as:

with Υ  being expressed as:

and Ψ  being expressed as:

By rearranging the above three equations, the following 
equation can be obtained:

From Eq. (63), it can be seen that when using the pat-
tern of stiffness degradation defined in Eq. (45) and com-
bining the spectral decomposition of the strain tensor to 
establish the constitutive relationship, although the result 
was improved, there were still some issues, i.e. the effec-
tive stress components ˆ̄σ+

1  , ˆ̄σ−
2  and ˆ̄σ−

3  could not degrade 
into nominal stress.

In order to overcome this limitation, a different pattern 
of stiffness degradation should be defined. To take the 
effective principal or normal stress in any principal direc-
tion as the resultant force of the axial stresses in three 
orthogonal directions, i.e.

with ̟ (1− ν̄) and ̟ ν̄ being contributing coefficient, and 
assuming that when damage occurs and the axial effec-
tive stresses degrade into nominal stresses, with the nom-
inal principal or normal stress in any principal direction 
being the resultant force of the axial nominal stresses, i.e.

(59){σ } =
[

E+
(

ε+
)]{

ε+e
}

+
[

E−
(

ε−
)]{

ε−e
}

.

(60)







σ̂1
σ̂2
σ̂3







= ̟ Ē0(Υ + Ψ ).

(61)

Υ =





(1− ν̄) ν̄ ν̄

φ+
2 ν̄ φ+

2 (1− ν̄) φ+
2 ν̄

φ+
3 ν̄ φ+

3 ν̄ φ+
3 (1− ν̄)











0

ε̂+2
ε̂+3







.

(62)Ψ =





φ−
1 (1− ν̄) φ−

1 ν̄ φ−
1 ν̄

ν̄ (1− ν̄) ν̄

ν̄ ν̄ (1− ν̄)











ε̂−1
0
0







.

(63)







σ̂1
σ̂2
σ̂3







=





1 0 0

0 φ+
2 0

0 0 φ+
3











ˆ̄σ+
1
ˆ̄σ+
2
ˆ̄σ+
3







+





φ−
1 0 0
0 1 0
0 0 1











ˆ̄σ−
1
ˆ̄σ−
2
ˆ̄σ−
3







.

(64)







ˆ̄σ1
ˆ̄σ2
ˆ̄σ3







=̟ ·







(1− ν̄) ˆ̄σ
′

1 + ν̄ ˆ̄σ
′

2 + ν̄ ˆ̄σ
′

3

ν̄ ˆ̄σ
′

1 + (1− ν̄) ˆ̄σ
′

2 + ν̄ ˆ̄σ
′

3

ν̄ ˆ̄σ
′

1 + ν̄ ˆ̄σ
′

2 + (1− ν̄) ˆ̄σ
′

3
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with σ̂ ′

i = φi ˆ̄σ
′

i (i = 1, 2, 3),then the matrix representation 
of damaged elastic stiffness tensor can be defined as:

By this method, Eq. (47) can be rewritten as:

where Υ ′ can be expressed as:

and Ψ ′ can be expressed as:

By rearranging the above three equations, the following 
equation can be obtained:

From Eq. (70), it can be noted that the issue existing in 
Eq. (63) was avoided.

Through further analysis, it is seen that Eq. (66) can be 
decomposed as:

where 
[

Ē
]

 is the initial undamaged elastic stiffness matrix 
and [M] can be expressed by Eq. (42).

Then Eq. (59) can be rewritten as:

(65)







σ̂1
σ̂2
σ̂3







=̟ ·







(1− ν̄)σ̂
′

1 + ν̄σ̂
′

2 + ν̄σ̂
′

3

ν̄σ̂
′

1 + (1− ν̄)σ̂
′

2 + ν̄σ̂
′

3

ν̄σ̂
′

1 + ν̄σ̂
′

2 + (1− ν̄)σ̂
′

3







(66)[E] = ̟ ·

















E1(1− ν̄) E2ν̄ E3ν̄ 0 0 0
E1ν̄ E2(1− ν̄) E3ν̄ 0 0 0
E1ν̄ E2ν̄ E3(1− ν̄) 0 0 0

0 0 0 E23(1−2ν̄)
2 0 0

0 0 0 0 E13(1−2ν̄)
2 0

0 0 0 0 0 E12(1−2ν̄)
2

















.

(67)







σ̂1
σ̂2
σ̂3







= ̟

�

Υ
′
+ Ψ

′
�

.

(68)

Υ
′
=





(1− ν̄) φ+
2 ν̄ φ+

3 ν̄

ν̄ φ+
2 (1− ν̄) φ+

3 ν̄

ν̄ φ+
2 ν̄ φ+

3 (1− ν̄)











0
ˆ̄σ
′+
2
ˆ̄σ
′+
3







.

(69)Ψ
′
=





φ−
1 (1− ν̄) ν̄ ν̄

φ−
1 ν̄ (1− ν̄) ν̄

φ−
1 ν̄ ν̄ (1− ν̄)











ˆ̄σ
′−
1
0
0







.

(70)







σ̂1
σ̂2
σ̂3







=̟ ·











φ+
2 ν̄

ˆ̄σ
′+
2 + φ+

3 ν̄
ˆ̄σ
′+
3 + φ−

1 (1− ν̄) ˆ̄σ
′−
1

φ+
2 (1− ν̄) ˆ̄σ

′+
2 + φ+

3 ν̄σ̂
′+
3 + φ−

1 ν̄
ˆ̄σ
′−
1

φ+
2 ν̄

ˆ̄σ
′+
2 + φ+

3 (1− ν̄) ˆ̄σ
′+
3 + φ−

1 ν̄
ˆ̄σ
′−
1











.

(71)[E] =
[

Ē
]

[M]

(72){σ } =
[

Ē
][

M+
]{

ε+e
}

+
[

Ē
][

M−
]{

ε−e
}

where 
[

M±(ω̂±)
]

 can be expressed as:

where φ±
i = (1− ω̂±

i )
2 with ω̂±

i (i = 1, 2, 3) being the 
principal tensile and compressive damage variables.

The damage–effect matrix shown in Eq.  (73) is in the 
principal coordinate system of damage which corre-
sponds to the direction of the principal strains. In terms 
of a general coordinate system, it should be transformed 
to the global coordinate system as following:

where [R] is the coordinate transition matrix.
By substituting Eq.  (74) into Eq.  (72), Eq.  (72) can be 

rewritten as:

2. Definition of damaged elastic stiffness for cyclic 
loading

Tests of concrete showed that the degradation of the 
elastic stiffness had unilateral effect under cyclic loading 
due to the opening and closing of micro cracks caused 
by the load that changed the sign during the loading 
process. It can be explained that some tensile cracks 
tended to close when the load changed from tension to 
compression, which led to elastic stiffness recovery dur-
ing compressive loading; whereas, in the case of transi-
tion from compression to tension, the pre-existing cracks 
formed during the previous compressive loading and the 
new cracks formed during the subsequent tensile load-
ing would cause further reduction of the elastic stiffness. 
Because the damage-effect matrix 

[

M±
∗

]

 defined in Eq. 
(75) did not include the elastic stiffness recovery phe-
nomenon, the formulation proposed by Lee and Fenves 
(1998) for cyclic loading was extended in this paper for 
the anisotropic damage.

When the load changes from compression to tension, 
the anisotropic tensile damage variable will be assumed 
as follows:

(73)

[

M±
]

= dig
[

φ±
1 φ±

2 φ±
3

√

φ±
2 φ

±
3

√

φ±
1 φ

±
3

√

φ±
1 φ

±
2

]

(74)
[

M±
∗

(

ω̂
)]

= [R]T
[

M±
]

[R]

(75){σ } =
[

Ē
][

M+
∗

]{

ε+e
}

+
[

Ē
][

M−
∗

]{

ε−e
}

.

(76)ŵ+
i = 1− (1−H(ε̂i)ω̂

+
i )(1−H(ε̂i)ω̂

−
i )
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where ŵ+
i  is the tensile damage variable for cyclic load-

ing and H(x) is the Heaviside step function ( H(x) = 1 for 
x > 0 and H(x) = 0 for x < 0).

For the case of transition from tension to compression, 
the anisotropic compressive damage variable is defined 
as:

where ŵ−
i  is the compressive damage variable for cyclic 

loading and 0 ≤ s0 ≤ 1 is a constant. Any value between 0 
and 1 will result in partial recovery of the elastic stiffness.

Based on Eqs. (76) and (77), the following can be 
obtained:

a. when all principal strains are positive, H(ε̂i) = 1 and 
Eq. (76) becomes 

which implies that there is no stiffness recovery 
occurs when the load changes from compression to 
tension.

b. when all principal strains are negative, H(ε̂i) = 0 and 
H(−ε̂i) = 1 and Eq. (76) can be simplified down to 
ŵ+
i = 0 , then Eq. (77) becomes

 

which can reduce to ŵ−
i = ω̂−

i  when s0 = 0 , and 
it implies full elastic stiffness recovery during the 
transition from tension to compression. If s0 = 1 , 
Eq.  (79) will reduce to the form of Eq.  (78), which 
means that there is no stiffness recovery. For the 
case of 0 < s0 < 1 , Eq.  (79) can be written as 
ŵ−
i = s0ω̂

+
i + ω̂−

i − s0ω̂
+
i ω̂

−
i  , and it can be explained 

that some tensile cracks tend to close or partially 
close and as a result, elastic stiffness partial recovery 
occurs in compressive loading. To simplify the cal-
culation, in this paper, the value of s0 was set to one, 
i.e. full elastic stiffness recovery during the transition 
from tension to compression.

As mentioned above, if ε̂1 > 0 , ε̂2 < 0 and ε̂3 < 0 , then 
the following can be obtained:

By substituting ŵ+
i  and ŵ−

i  into 
[

M±
]

 defined in Eq. 
(73), the damage-effect matrix for cyclic loading can be 
rewritten as follows:

(77)ŵ−
i = 1− (1−H(−ε̂i)s0ω̂

−
i )(1−H(−ε̂i)ω̂

−
i )

(78)
ŵ+
i = 1− (1− ω̂+

i )(1− ω̂−
i ) = ω̂+

i + ω̂−
i − ω̂+

i ω̂
−
i

(79)ŵ−
i = 1− (1− s0ω̂

+
i )(1− ω̂−

i )

(80)

ŵ+
1 = ω̂+

1 + ω̂−
1 − ω̂+

1 ω̂
−
1 , ŵ−

1 = 0

ŵ+
2 = 0, ŵ−

2 = s0ω̂
+
2 + ω̂−

2 − s0ω̂
+
2 ω̂

−
2

ŵ+
3 = 0, ŵ−

3 = s0ω̂
+
3 + ω̂−

3 − s0ω̂
+
3 ω̂

−
3

.

where ϑ+
i = (1−H(ε̂i)ω̂

+
i )(1−H(ε̂i)ω̂

−
i ) and 

ϑ−
i = (1−H(−ε̂i)s0ω̂

+
i )(1−H(−ε̂i)ω̂

−
i ) with ω̂+

i  and ω̂−
i  

being respectively the principal tensile and compressive 
damage variables and i = 1, 2, 3.

Combining Eqs. (71), (74) and (81), the final form of 
the damaged elastic stiffness for cyclic loading can be 
expressed as:

2.2  Plasticity Part
Concrete has different material behaviors under tensile and 
compressive loadings, thus the yield criterion proposed by 
Lubliner et  al. (1989) that accounts for both tension and 
compression plasticity was adopted in this work. This cri-
terion was successful in simulating the concrete behavior 
under uniaxial, biaxial, multiaxial and cyclic loadings (Lee 
and Fenves 1998; Yu et al. 2010; Cicekli et al. 2007; Abu Al-
Rub and Kim 2010; Shen et al. 2015). Furthermore, it was 
proved by Abu Al-Rub and Voyiadjis (2003) that PDMs for-
mulated in the effective space were numerically more stable 
and attractive. In many works, this strategy was adopted 
(Abu Al-Rub and Kim 2010; Grassl et  al. 2013; Liu et  al. 
2013; Murakami 2012), so was in this paper. Thus the yield 
criterion proposed by Lubliner et al. (1989) is expressed in 
the effective configuration as follows:

where J2 = s̄ij s̄ij/2 is the second-invariant of the effective 
deviatoric stress tensor s̄ij = σ̄ij − σ̄kkδij/3 , I1 = σ̄kk is 
the first-invariant of the effective Cauchy stress tensor σ̄ij , 
ˆ̄σmax is the maximum principal effective stress, H( ˆ̄σmax) 
is the Heaviside step function, and the parameters α 
and β are dimensionless constants which are defined by 
Lubliner et al. (1989) as follows:

with fb0 and f −0  being respectively the initial equi-biax-
ial and uniaxial compressive yield stress. Experimental 
values for fb0/f −0  lie between 1.10 and 1.16 and yielding 
values for α are between 0.08 and 0.12. Referring to Abu 
Al-Rub and Kim (2010) 0.12 was chosen as the value for 
α in this study.

(81)

[

M±
C

(

ŵ±
i

)]

= dig
[

ϑ±
1 ϑ±

2 ϑ±
3

√

ϑ±
2 ϑ±

3

√

ϑ±
1 ϑ+

3

√

ϑ±
1 ϑ±

2

]

(82)
[

E±
C

]

=
[

Ē
]

[R]T
[

M±
C

]

[R].

(83)
f =

√

3J̄2 + αĪ1 + β(k
p
i )H( ˆ̄σmax)

− (1− α)c̄−(ε−eq) ≤ 0

(84)

α =
(fb0/f

−
0 )− 1

2(fb0/f
−
0 )− 1

, β = (1− α)
c̄−(ε−eq)

c̄+(ε+eq)
− (1+ α)
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The internal plastic state variable kpi  in Eq. (83) can be 
defined as follows:

with its rate being expressed as

or

where H+ and H− are defined as

and

The dimensionless parameter r( ˆ̄σij) is a weight factor 
which can be expressed as follows:

where the sign �•� indicates Macauley bracket, which is 
defined as

In fact, ε̇+eq and ε̇−eq are equivalent to the following two 
equations:

and

where ˆ̇εpmax and ˆ̇εpmin are respectively the maximum and 
minimum eigenvalues of the plastic strain rate ε̇pij . If 
ˆ̇ε
p
1 > ˆ̇ε

p
2 > ˆ̇ε

p
3 , then ˆ̇εpmax = ˆ̇ε

p
1 and ˆ̇εpmin = ˆ̇ε

p
3 and ˆ̇ε

P
 can be 

expressed as:

(85)k
p
i =

∫ t

0
k̇
p
i dt =

∫ t

0
�̇
pBP

(

ˆ̄
σ

)

dt

(86)k̇
p
i = Hij ˆ̇ε

p
j

(87)
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(88)H+ = r( ˆ̄σij)

(89)H− = −(1− r( ˆ̄σij))

(90)r( ˆ̄σij) =

∑3
k=1

〈

ˆ̄σk

〉

∑3
k=1

∣

∣

∣

ˆ̄σk

∣

∣

∣

(91)�x� =
1

2
(|x| + x), k = 1, 2, 3.

(92)ε̇+eq = r( ˆ̄σij) ˆ̇ε
p
max

(93)ε̇−eq = −(1− r( ˆ̄σij)) ˆ̇ε
p
min

(94)ˆ̇
ε

p
=

[

ˆ̇ε
p
1
ˆ̇ε
p
2
ˆ̇ε
p
3

]T
= �̇

P
∂Gp

(

ˆ̄
σ

)

∂ ˆ̄σ

where GP is the plastic potential, which is to be described 
later.

Combining Eqs. (87) and (94), the expression Bp( ˆ̄σ ) in 
Eq. (85) can be obtained as

Since concrete behavior in compression is more of a 
ductile behavior as compared to its corresponding brit-
tle behavior in tension (Abu Al-Rub and Kim 2010), the 
isotropic hardening expressions c̄+ and c̄− in the effective 
configuration are defined as follows:

where f̄ +0  and f̄ −0  ( f̄ −0 < 0 ) are respectively the effective 
yield strengths under uniaxial tension and compression. 
The parameters Q− , b− and h+ are material constants, 
which are obtained in the effective configuration of the 
uniaxial cycle stress–strain diagram.

In view of the material property of concrete, in the 
present model, the flow rule is given as a function of the 
effective stress σ̄ij , such that:

where �̇p is the Lagrangian plasticity multiplier, which 
can be obtained under the plasticity consistency condi-
tion, ḟ = 0 , such that

The plastic potential Gp adopted in this paper is the 
Drucker-Prager function expressed as:

where αp is a parameter chosen to provide proper dis-
tance with common range between 0.2 and 0.3 for con-
crete, and the plastic flow direction ∂Gp/∂σ̄ij in Eq. (100) 
can be expressed as

(95)
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�
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�

ˆ̄
σ

�
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0 0 0
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�
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�
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·
∂Gp

�
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.

(96)c̄+ = f̄ +0 + h+ε+eq

(97)c̄− = −f̄ −0 + Q−
[

1− exp(−b−ε−eq)
]

(98)ε̇
p
ij = �̇

p ∂G
p

∂σ̄ij

(99)f ≤ 0, �̇p ≥ 0, �̇pf = 0, �̇pḟ = 0.

(100)Gp =

√

3J̄2 + αpĪ1

(101)
∂Gp

∂σ̄ij
=

3

2

s̄ij
√

3J̄2
+ αpδij .
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3  Calibration and Comparisons with Test Results
To investigate the applicability and effectiveness of the 
proposed model, several numerical examples of con-
crete under different loading conditions were presented 
in this section. The model response was compared with 
five groups of experiments including cyclic, uniaxial, and 
biaxial loading.

The calibration of the material parameters often relies 
on monotonic stress–strain experimental curves. How-
ever, this method results in a non-unique determina-
tion of these material parameters. Therefore, based on 
the uniaxial cyclic test, Abu Al-Rub and Kim (2010) 
proposed a method to identify the plasticity material 
parameters. The method can be summarized as follows: 
Firstly, the damaged Young’s module E for each cycle 
can be determined by connecting each unloading points 
( A− E ) and reloading points ( A′

− E
′ ) shown in Fig.  5. 

Then the effective stress σ̄ can be obtained by the equa-
tion as σ̄ = (Ē/E)σ . Under this condition, the plasticity 
parameters h+ , Q− and b− can be determined. Moreover, 
from Eq. (8) and the measured damaged Young’s module 
in Fig. 5, the variation of the damage density with strain 
can be plotted shown in Fig. 6b such that d = 1− E/Ē0 . 
For more details of this method, Abu Al-Rub and Kim 
(2010) can be referred. As mentioned previously, since 
the uniaxial cyclic tests are relatively complex, the stress–
strain data is usually obtained by uniaxial monotonic test 
in actual engineering. Therefore, the method proposed 
by Abu Al-Rub and Kim (2010) to identify the plasticity 
parameters may cause the lack of uniaxial cyclic load-
ing stress–strain data. Based on the above analysis, the 
following method was used to identify the plasticity 
parameters in this study, and it can be summarized as 

follows: Firstly, based on Eqs. (16) and (20), the relations 
between stress and strain under uniaxial stress state can 
be obtained. With Eqs. (19) and (23), the damage vari-
ables d+ and d− can be determined. However, since the 
axial plastic strains ε±p are unknowns in the computing 
processes of the damage variables d+ and d− , in order 
to obtain the damage variables, the axial plastic strains 
should be determined firstly. As discussed in Zhang 
et al. (2008), the ratio of axial plastic strain ε+p and ine-
lastic strain ε+ck under uniaxial tension can be taken as 
0.50−0.95 and the ratio of axial plastic strain ε−p and ine-
lastic strain ε−in under uniaxial compression can be taken 
as 0.35−0.70 . As shown in Fig. 1, the inelastic strains ε+ck 
and ε−in can be obtained by the following equations:

(102)ε+ck = ε+ − σ+/Ē0, ε−in = ε− − σ−/Ē0.

Fig. 5 Experimental stress–strain curves in the effective and nominal 
configurations for Karsan and Jirsa (1969) experimental data.

Fig. 6 The model responses in cyclic compression compared to 
experimental results presented in Karsan and Jirsa (1969).
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In this study, based on the experimental results of uni-
axial cyclic tensile test of Taylor (1992) and uniaxial cyclic 
compressive test of Karsan and Jirsa (1969), the ratio of 
axial plastic strain ε+p and inelastic strain ε+ck was taken 
as 0.90 , and the ratio of axial plastic strain ε−pand inelas-
tic strain ε−in was taken as 0.60 . With this, the damage 
variables d ′+ and d ′− by using Eqs. (19) and (23) can be 
obtained, and then the effective stress σ̄ can be obtained 
by using Eq. (1). Based on the above analysis, the plastic-
ity material parameters can be obtained by fitting the cal-
culated effective stress-axial plastic strain curve.

3.1  Uniaxial Cyclic Compressive Test
Using the method mentioned above, the identified com-
pressive plasticity and damage material constants asso-
ciated with fitting Karsan and Jirsa (1969) experimental 
data are listed in Table  1. The comparison between the 
numerical predictions and the experiment results is 
shown in Figs. 5 and 6.

From Fig. 5, it can be seen that the predicted effective 
stress–strain curve is in line with the experiment result. 
However, Fig. 6a shows that the predicted nominal stress 

Table 1 Material constants identified from the experimental 
results (Karsan and Jirsa 1969).

E0(Gpa) ν f−u   (MPa) ε
−
u

(1.0E−3)

31.00 0.20 − 27.00 −1.59

αa αd Q−(MPa) b−

2.06 1.18 74.00 702.14

Table 2 Material constants identified from the experiment 
results of Taylor (1992).

E0(Gpa) ν f
+

0
(MPa)

31.00 0.2 3.40

ε
+

0
(1.0E−4) αt h+(MPa)

1.26 3.61 4436

Fig. 7 The model responses in cyclic tension compared to 
experimental results presented in Taylor (1992).

Table 3 Material properties used for  the  monotonic 
uniaxial compressive test.

E0(Gpa) ν f−u (MPa) ε
−
u

(1.0E−3)

31.70 0.20 −27.63 −1.60

αa αd Q−(MPa) b−

2.05 1.22 37.00 3173

Fig. 8 The model responses in monotonic uniaxial compression 
compared to experimental results presented in Karsan and Jirsa 
(1969).
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is slightly smaller than the experiment result. The main 
reason is that the predicted damage density is higher 
than the value showed in the experiment result under the 
same strain (see Fig.  6b). Although the damage density 
is slightly higher than the predicted value, the calculated 
result is reasonable because the bigger predicted damage 
value is safer in project.

3.2  Uniaxial Cyclic Tensile Test
With the same method mentioned above, the identified 
material parameters are listed in Table  2. The experi-
ment results of uniaxial cyclic tensile test of Taylor (1992) 
are compared with the numerical predictions shown in 
Fig. 7. From Fig. 7, it can be seen that the predicted nom-
inal stress–strain curve and the damage density agree 
with the experiment results.

3.3  Monotonic Uniaxial Compressive Test
The experiment results of uniaxial compressive test 
(Karsan and Jirsa 1969) were employed in this paper for 
comparison. The material properties adopted in the sim-
ulation are listed in Table 3. The comparison between the 
simulation and test is presented in Fig. 8. From Fig. 8, it 
can be seen that the predicted nominal stress is slightly 
smaller than the value showed in the experiment result. 
This phenomenon is also caused by the bigger predicted 
damage density.

3.4  Monotonic Uniaxial Tensile Test
The comparison between the numerical predictions 
and the experimental results of Gopalaratnam and 
Shah (1985) is presented in Fig.  9. The material con-
stants used in this simulation are listed in Table  4. As 
it is shown in Fig. 9, the simulated tensile stress–strain 
curve agrees with the experimental data.

3.5  Monotonic Biaxial Compressive Test
The biaxial compressive test presented in Kupfer et  al. 
(1969) was adopted in this paper to validate the model. 
The comparison between the numerical predictions 
and the experimental results is presented in Fig. 10. The 
material constants for numerical simulation are listed in 
Table 5.

In this paper, the strain tensor was decomposed into 
positive and negative parts by spectrum decomposition 
technique and the corresponding stress tensor was split 
into two parts. Through this processing, not only the dif-
ferent damage responses can be considered, but also the 
Poisson’s effect can be easily considered in the biaxial or 
trial compression test. As it is shown in Fig.  10c, when 
the biaxial stress ratio is σ1/σ2 = −1/− 0.52 , bothε1
andε2will be compressive strains and ε3will be the tensile 
strain. Since tensile strain may lead to tensile damage, to 
consider tensile material constants is indispensable in 
this case. This is both an advantage and a disadvantage. 
The advantage is that the model can accurately charac-
terize damage anisotropic of concrete under multi-axial 
stress state with the Poisson’s effect taken into account, 
and the disadvantage is that more material constants are 
needed.

4  Conclusions
Based on the combination of damage mechanics and 
classical plastic theory, a new empirical plastic–damage 
constitutive model was presented to simulate the failure 
of concrete. The proposed model could include different 
responses of concrete under tension and compression, 
the effect of stiffness degradation, the interaction effects 
of damage in the orthogonal direction and the stiffness 

Fig. 9 The model responses in monotonic uniaxial tension compared 
to experimental results presented in Gopalaratnam and Shah (1985).

Table 4 Material parameters used for  the  monotonic 
uniaxial tensile test.

E0(Gpa) ν f
+

0
(MPa)

31.00 0.2 3.45

ε
+

0
(1.0E−4) αt h+(MPa)

1.27 3.71 10,304
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recovery due to crack closure in cyclic loading. With 
comparison with a wide range of experiment results, it 
was concluded that:

1. The proposed model could effectively simulate the 
nonlinear properties of concrete under different 
loading conditions, such as cyclic, uniaxial and biax-
ial conditions. Moreover, the proposed model could 
overcome the limitation of lack of uniaxial cyclic 
loading stress–strain data in actual engineering and 
could determine the parameters conveniently.

2. Although choosing strain as the state variable to 
judge the damage state is a controversial issue, the 

Fig. 10 The model responses in monotonic uniaxial and biaxial compressive loading compared to experimental results reported by Kupfer et al. 
(1969).

Table 5 Material constants used for  the  biaxial 
compressive test.

Elastic constants Tensile material constants

E0(Gpa) ν f
+

0
(MPa) ε

+

0
(1.0E−4) αt h+(MPa)

32.00 0.20 2.88 1.15 2.59 8112

Compressive material constants

f−u (MPa) ε
−
u (1.0E−3) αa αd Q−(MPa) b−

−32.80 −1.69 1.99 1.53 70.24 892.51
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results of simulation in this paper indicated that this 
choice was feasible. Moreover, although more mate-
rial constants are needed with the Poisson’s effect in 
the multi-axial compressive test being considered, to 
give an eye to tensile material constants was indis-
pensable.
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