Skip to main content

Table 1 Summary of the loading geometries studied and the equations used to calculate the Indirect tensile strength.

From: Brazilian Test of Concrete Specimens Subjected to Different Loading Geometries: Review and New Insights

Loading geometry

ITS

Correction factor

Correction factor calculated using Griffith function (GF)

Sa

Db

Pc

Geometry

C

U

R

\( \sigma_{\text{ITS}} = \frac{{2P_{\hbox{max} } }}{\pi Dt}C_{f}^{\text{CUR}} \)

\( C_{f}^{\text{CUR}} = \frac{{\sin \alpha \cos^{2} \alpha }}{\alpha } \)

(Satoh 1986)

\( C_{f}^{\text{CUR}} = \frac{{\sin \alpha \cos^{2} \alpha }}{\alpha };\alpha \ge 20^{ \circ } \)

(This paper)

C

U

P

\( \sigma_{\text{ITS}} = \frac{{2P_{\hbox{max} } }}{\pi Dt}C_{f}^{\text{CUP}} \)

\( C_{f}^{\text{CUP}} = \left[ {1 - \left( {\frac{b}{R}} \right)^{2} } \right]^{{\frac{3}{2}}} = \cos^{3} \alpha ;\sin \alpha = \frac{b}{R} \)

(Tang 1994)

\( C_{f}^{\text{CUP}} = \frac{{4\sin \alpha \left( {\sin^{2} \alpha - 3} \right)^{2} }}{{3\left( {8\sin^{3} \alpha + 24\sin \alpha - 3\sin 2\alpha - 6\alpha } \right)}};\alpha \ge 10^{ \circ } \)

(This paper)

F

U

P

\( \sigma_{\text{ITS}} = \frac{{2P_{\hbox{max} } }}{\pi Dt}C_{f}^{\text{FUP}} \)

\( C_{f}^{\text{FUP}} = \frac{{\left( {2A^{2} + A + B} \right)^{2} }}{{8\left( {A + B} \right)B}};A = \cos \alpha ;B = \frac{\sin \alpha }{\alpha } \)

(Wang et al. 2004)

\( C_{f}^{\text{FUP}} = \frac{{ - \cos^{2} \alpha \sin \alpha }}{{\left( {\sin \alpha \cos \alpha - 2\alpha } \right)}};\alpha \ge 25^{ \circ } \)

(Huang et al. 2014)

  1. C and F account for a curved and flattened portion, respectively. U accounts for a uniform load distribution. R and P stand for radial and parallel projection, respectively. The letter D stand for disk diameter, t denotes the disk thickness, P is the maximum load at the moment of failure, α is the angle subtended by the contact area, and b is the horizontal distance over which the load is distributed in the CUP configuration. GF denotes the Griffith function.
  2. aThe shape of the contact area.
  3. bLoad distribution over the contact area.
  4. cLoad projection toward the interior of the sample.