Abbas, R., Abo-El-Enein, S. A., & Ezzat, E. S. (2010). Properties and durability of metakaolin blended cements: Mortar and concrete. Materiales De Construccion,60, 33–49.
Article
Google Scholar
Abdul, R. H., & Wong, H. S. (2005). Strength estimation model for high-strength concrete incorporating metakaolin and silica fume. Cement Concrete Research,35(4), 688–695.
Article
Google Scholar
ASTM C. (2006a). Standard test method for density, absorption, and voids in hardened concrete, 642. Philadelphia, PA: Annual Book of ASTM Standards.
Google Scholar
ASTM C. (2006b). Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration, 1202. Philadelphia, PA: Annual Book of ASTM Standards.
Google Scholar
ASTM C. (2006c). Standard test method for static modulus of elasticity and poisson’s ratio of concrete in compression, 469. Philadelphia, PA: Annual Book of ASTM Standards.
Google Scholar
Badogiannis, E., & Tsivilis, S. (2009). Exploitation of poor Greek kaolins: Durability of metakaolin concrete. Cement & Concrete Composites,31(2), 128–133.
Article
Google Scholar
Bai, J., Wild, S., & Sabir, B. B. (2002). Sorptivity and strength of air cured and water cured PC-PFA-MK concrete and the influence of binder composition on carbonation depth. Cement and Concrete Research,32(11), 1813–1821.
Article
Google Scholar
Basu, P. C. (2003). High performance concrete. In Proceedings INAE national seminar on engineered building materials and their performance (pp. 426–450).
Basu, P. C., Mavinkurve, S., Bhattacharjee, K. N., Deshpande, Y., & Basu, S. (2000). High reactivity metakaolin: A supplementary cementitious material. In Proceedings ICI-Asian conference on ecstasy in concrete, 20–22 Nov, Bangalore, India (pp. 237–436).
Boddy, A., Hooton, R. D., & Gruber, K. A. (2001). Long-term testing of the chloride-penetration resistance of concrete containing high-reactivity metakaolin. Cement and Concrete Research,31, 759–765.
Article
Google Scholar
BS EN-12390-8. (2000). Depth of penetration of water under pressure. British Standards Institution.
CEB-FIP. (1989). Diagnosis and assessment of concrete structures-state of the art report. CEB Bulletin, 192, 83–85.
Google Scholar
Dhir, R. K., & Yap, A. W. F. (1984). Superplasticized flowing concrete: durability. Magazine of Concrete Research,36(127), 99–111.
Article
Google Scholar
DIN 1045. (1988). Beton und Stahlbeton. Koln, Germany: Beton Verlag GMBH.
Dinakar, P. (2012). Design of self compacting concrete with fly ash. Magazine of Concrete Research,64(5), 401–409.
Article
Google Scholar
Ding, Z., Zhang, D., & Yu, R. (1999). High strength composite cement. China Building & Material Science Technology,1, 14–17.
Google Scholar
Dvorkin, L., Bezusyak, A., Lushnikova, N., & Ribakov, Y. (2012). Using mathematical modelling for design of self compacting high strength concrete with metakaolin admixture. Construction and Building Materials,37, 851–864.
Article
Google Scholar
Gruber, K. A., Ramlochan, T., Boddy, A., Hooton, R. D., & Thomas, M. D. A. (2001). Increasing concrete durability with high-reactivity metakaolin. Cement & Concrete Composites,23, 479–484.
Article
Google Scholar
Guneyisi, E., Gesoglu, M., & Mermerdas, K. (2008). Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Materials and Structures,41, 937–949.
Article
Google Scholar
Haque, M. N., & Kayali, O. (1998). Properties of high strength concrete using a fine fly ash. Cement and Concrete Research,28(10), 1445–1452.
Article
Google Scholar
IS. (1987). Specification for 53 grade ordinary Portland cement, 12269. New Delhi: Bureau of Indian Standards.
Khatib, J. M. (2008). Metakaolin concrete at a low water to binder ratio. Construction and Building Materials,22(8), 1691–1700.
Article
MathSciNet
Google Scholar
Kim, H. S., Lee, S. H., & Moon, H. Y. (2007). Strength properties and durability aspects of high strength concrete using Korean metakaolin. Construction and Building Materials,21, 1229–1237.
Article
Google Scholar
Mehta, P. K., & Monteiro, P. J. (1999). Concrete: microstructure, properties, and materials. Delhi, India: Indian Concrete Institute.
Google Scholar
Nehdi, R. M., Mindness, S., & Aitcin, P. C. (1998). Rheology of high performance concrete: Effect of ultrafine particles. Cement and Concrete Research,28(5), 687–697.
Article
Google Scholar
Neville, A. M. (1997). Concrete with particular properties. In Properties of concrete (pp. 653–672). Harlow, UK: Longman
Pal, S. C., Mukherjee, A., & Pathak, S. R. (2001) Development of high performance concrete composites using high volume cement replacement with supplementary pozzolanic and cementitioius solid waste. In S. K. Kaushik (Ed.), Proceedings of SEC, recent developments in structural engineering (pp. 215–229). New Delhi, India: Phoenix publishing house Pvt Ltd.
Parande, A. K., Ramesh Babu, B., Karthik, M. A., Kumar, K. K., & Palaniswamy, N. (2008). Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar. Construction and Building Materials,22(3), 127–134.
Article
Google Scholar
Patil, B. B., & Kumbhar, P. D. (2012). Strength and durability properties of high performance concrete incorporating high reactivity metakaolin. International Journal of Modern Engineering Research,2(3), 1099–1104.
Google Scholar
Poon, C. S., Lam, L., Kou, S. C., Wong, Y. L., & Wong, R. (2001). Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cement and Concrete Research,31(9), 1301–1306.
Article
Google Scholar
Rasiah, A. R. (1983) High strength concrete for developing countries. In: Proceedings of the first international conference on concrete technology in developing countries, Amman, Jordan.
Sabir, B. B., Wild, S., & Bai, J. (2001). Metakaolin and calcined clays as pozzolans for concrete: A review. Cement & Concrete Composites,23, 441–454.
Article
Google Scholar
Schiessl, P. (1988). Corrosion of steel in concrete, Report of the technical committee 60-CSC, RILEM. London, UK: Chapman and Hall.
Google Scholar
Tiwari, A. K., & Bandyopadhyay, P. (2003) High performance concrete with Indian metakaolin. In International symposium on innovative world of concrete, 19–21 September. Pune: Indian Concrete Institute.
Wild, S., & Khatib, J. M. (1997). Portlandite consumption of metakaolin cement Pastes and mortars. Cement and Concrete Research,27(1), 137–146.
Article
Google Scholar
Wild, S., Khatib, J. M., & Jones, A. (1996). Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cement and Concrete Research,26(10), 1537–1544.
Article
Google Scholar
Yogendran, V., Langan, B. W., Haque, M. N., & Ward, M. A. (1987). Silica fume in high strength concrete. ACI Materials Journal,84, 124.
Google Scholar
Zain, M. F. M., Safiuddin, M. D., & Mahmud, H. (2000). Development of high performance concrete using silica fume at relatively high water-binder ratios. Cement and Concrete Research,30(9), 1501–1505.
Article
Google Scholar