ACI 446. (2009). *Fracture toughness testing of concrete*. Farmington Hills, MI: America Concrete Institute (in progress).

ASTM. (2005). *Standard test method for splitting tensile strength of cylindrical concrete specimens*. Annual book of ASTM standards, C496/C496M (Vol. 04.02).

Bažant, Z. P. (1976). Instability, ductility, and size effect in strain softening concrete. *Journal of Engineering Mechanics Division*, *102*(2), 331–344.

Bažant, Z. P., & Planas, J. (1998). *Fracture and size effect in concrete and other quasibrittle materials*. Boca Raton, FL: CRC Press.

Google Scholar

Bažant, Z. P., & Yu, Q. (2011). Size effect testing of cohesive fracture parameters and nonuniqueness of work-of-fracture method. *Journal of Engineering Mechanics,**137*(8), 580–588.

Article
Google Scholar

CEB-FIP. (1990). *Final draft CEB-FIP model code 1990*. Bulletin Information Committee Euro-International, Beton 203.

CEB-FIP. (2010). *Final draft CEB-FIP model code 2010*. Bulletin Information Committee Euro-International. Beton 203.

Coronado, C., & Lopez, M. (2005). Modeling of FRP-concrete bond using nonlinear damage mechanics. *Proceedings of the FRPRCS*-*7: 7th International symposium on fiber reinforced polymer reinforcement for reinforced concrete structures*, ACI, KS.

Coronado, C. A., & Lopez, M. M. (2008). Experimental characterization of concrete epoxy interfaces. *Journal of Materials in Civil Engineering,**20*(4), 303–312.

Article
Google Scholar

Elices, M., Guinea, G., & Planas, J. (1992). Measurement of the fracture energy using 3-point bend tests. 1. Influence of experimental procedures. *Materials and Structures,**25*(148), 212–218.

Google Scholar

Elices, M., Guinea, G. V., Gomez, J., & Planas, J. (2002). The cohesive zone model: Advantages, limitations and challenges. *Engineering Fracture Mechanics,**69*(2), 137–163.

Article
Google Scholar

Gerstle, W. (2010). Progress in developing a standard fracture toughness test for concrete. *Structures Congress 2010*, ASCE, Orlando, FL.

Guinea, G., Planas, J., & Elices, M. (1994). A general bilinear fitting for the softening curve of concrete. *Materials and Structures,**27*(2), 99–105.

Article
Google Scholar

Hillerborg, A., Modeer, M., & Petersson, P. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. *Cement and Concrete Research,**6*(6), 773–782.

Article
Google Scholar

Kitsutaka, Y., Kurihara, N., & Nakamura, S. (1998). Evaluation method of tension softening properties. *Proceedings of the FRAMCOS 3 preconference workshop on quantitative evaluation methods for toughness and softening properties of concrete*, Gifu, Japan.

Lubliner, J., Oliver, J., Oller, S., & Onate, E. (1989). Plastic-damage model for concrete. *International Journal of Solids and Structures,**25*(3), 299–326.

Article
Google Scholar

Maturana, P., Planas, J., & Elices, M. (1990). Evolution of fracture behaviour of saturated concrete in the low temperature range. *Engineering Fracture Mechanics,**35*(4–5), 827–834.

Article
Google Scholar

Petersson, P. E. (1981). Crack growth and development of fracture zones in plain concrete and similar materials. Rep. TVBM-1006, Division of Building Materials, Lund Institute of Technology, Sweden.

Planas, J., Guinea, G. V., & Elices, M. (1999). Size effect and inverse analysis in concrete fracture. *International Journal of Fracture,**95*(1–4), 367–378.

Article
Google Scholar

Planas, J., Guinea, G. V., Galvez, J. C., Sanz, B., & Fathy, A. M. (2007). Indirect test for stress–crack opening curve. RILEM report-TC-187-SOC.

Reinhardt, H. W., Cornelissen, H. A. W., & Hordijk, D. A. (1986). Tensile tests and failure analysis of concrete. *ASCE Journal of Structural Engineering,**112*(11), 2462–2477.

Article
Google Scholar

RILEM Draft Recommendation. (1990). Determination of fracture parameter (K
^{s}_{ic}
and CTOD_{c}) of plain concrete using three point bend tests. *Materials and Structures,**23*, 457–460.

Article
Google Scholar

Rocco, C., Guinea, G. V., Planas, J., & Elices, M. (2001). Review of the splitting-test standards from a fracture mechanics point of view. *Cement and Concrete Research,**31*(1), 73–82.

Article
Google Scholar