AFNOR. Béton (1995): béton de sable, Paris, France, NF P18-500.
Alonso, C., Andrade, C., Castellote, M., & Castro, P. (2000). Chloride threshold values to depassivate reinforcing bars embedded in a standardized opc mortar. Cement and Concrete Research,30(7), 1047–1055.
Article
Google Scholar
Armesto, L., Bahillo, A., Veijonen, K., Cabanillas, A., & Otero, J. (2002). Combustion behaviour of rice husk in a bubbling fluidised bed. Biomass and Bioenergy,23(3), 171–179.
Article
Google Scholar
Bederina, M., Gotteicha, M., Belhadj, B., Dheily, R. M., Khenfer, M. M., & Queneudec, M. (2012). Drying shrinkage studies of wood sand concrete-effect of different wood treatments. Construction and Building Materials,36, 1066–1075.
Article
Google Scholar
Bederina, M., Marmoret, L., Mezreb, K., Khenfer, M. M., Bali, A., & Que´neudec, M. (2007). Effect of the addition of wood shavings on thermal conductivity of sand concretes: Experimental study and modelling. Construction and Building Materials,21(3), 662–668.
Article
Google Scholar
Béton de sable, caractéristique et pratiques d’utilisation, Synthése du Projet National de Recherche et Développement SABLOCRETE. (1994). Presses de l’Ecole National des Ponts et Chaussées, Paris, France.
Bhanja, S., & Sengupta, B. (2005). Influence of silica fume on the tensile strength of concrete. Cement and Concrete Research,35(4), 743–747.
Article
Google Scholar
Bijen, J. (1996). Benefits of slag and fly ash. Construction and Building Materials,10(5), 309–314.
Article
Google Scholar
Bui, D. D. (2001). Rice husk ash as a mineral admixture for high performance concrete. PhD Thesis, Delft University of Technology, Delft, Netherland.
CEN. (2003). Concrete paving blocks - requirements and test methods: Measurement of abrasion according to the böhme test, Brüssel, Belgium, DIN EN 1338.
Chindaprasirt, P., Rukzon, S., & Sirivivatnanon, V. (2008). Resistance to chloride penetration of blended portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash. Construction and Building Materials,22(5), 932–938.
Article
Google Scholar
De Schutter, G., Bartos, P., Domone, P., & Gibbs, J. (2008). Self-compacting concrete. Caithness, UK: Whittles Publishing.
FAO. (2012). Rice market monitor, http://reliefweb.int/sites/reliefweb.int/files/resources/ap88e.pdf
Feng, Q., Yamamichi, H., Shoya, M., & Sugita, S. (2004). Study on the pozzolanic properties of rice husk ash by hydrochloric acid pretreatment. Cement and Concrete Research,34(3), 521–526.
Article
Google Scholar
Ganesan, K., Rajagopal, K., & Thangavel, K. (2008). Rice husk ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete. Construction and Building Materials,22(8), 1675–1683.
Article
Google Scholar
Horszczaruk, E. (2005). Abrasion resistance of high-strength concrete in hydraulic structures. Wear,259(1–6), 62–69.
Article
Google Scholar
Khay, S. E. E., Neji, J., & Loulizi, A. (2010). Shrinkage properties of compacted sand concrete used in pavements. Construction and Building Materials,24(9), 1790–1795.
Article
Google Scholar
Kjellsen, K.-O., Wallevik, O.-H., & Hallgren, M. (1999). On the compressive strength development of high-performance concrete and paste-effect of silica fume. Materials and Structures,32(1), 63–69.
Article
Google Scholar
Le, H. T., Rößler, C., Siewert, K., Ludwig, H.-M. (2012). Rice husk ash as a pozzolanic viscosity modifying admixture for self-compacting high performance mortar. In Proceedings of the 18th international conference on building materials, Weimar, Germany. F.A. Finger-Institut für Baustoffkunde, 0538–0545
Le, H. T., Siewert, K., Ludwig, H.-M. (2012). Synergistic effects of rice husk ash and fly ash on properties of self-compacting high performance concrete. In Proceedings of symposium on Ultra high performance concrete and Nanotechnology for High performance construction materials, Kassel, Germany, 187–195
Mehta, P. K. (1994). Rice husk ash: A unique supplementary cementing material. In Proceedings of Advances in concrete technology, Center for mineral and Energy Technology, Ottawa, Canada, 419–444
Nazari, A., & Riahi, S. (2011). Splitting tensile strength of concrete using ground granulated blast furnace slag and sio2 nanoparticles as binder. Energy and Buildings,43(4), 864–872.
Article
Google Scholar
Nguyen, V. T. (2011). Rice husk ash as a mineral admixture for ultra high performance concrete. PhD thesis, Delft, Netherland.
Nguyen, V. T., Ye, G., Breugel, K. V., Fraaij, A. L. A., & Bui, D. D. (2011). The study of using rice husk ash to produce ultra high performance concrete. Construction and Building Materials,25(4), 2030–2035.
Article
Google Scholar
Ollivier, J. P., Maso, J. C., & Bourdette, B. (1995). Interfacial transition zone in concrete. Advanced Cement Based Materials,2(1), 30–38.
Article
Google Scholar
Parra, C., Valcuende, M., & Gómez, F. (2011). Splitting tensile strength and modulus of elasticity of self-compacting concrete. Construction and Building Materials,25(1), 201–207.
Article
Google Scholar
Rodríguez de Sensale, G. (2010). Effect of rice-husk ash on durability of cementitious materials. Cement & Concrete Composites,32(9), 718–725.
Article
Google Scholar
Safiuddin, M., West, J. S., & Soudki, K. A. (2011). Flowing ability of the mortars formulated from self-compacting concretes incorporating rice husk ash. Construction and Building Materials,25(2), 973–978.
Article
Google Scholar
Salas, A., Delvasto, S., De Gutierrez, R. M., & Lange, D. (2009). Comparison of two processes for treating rice husk ash for use in high performance concrete. Cement and Concrete Research,39(9), 773–778.
Article
Google Scholar
Shetty, M. S. (2003). Concrete technology (theory and practice). New Delhi, India: S Chand & Co Ltd.
Siddique, R., & Khan, I. M. (2011). Supplementary cementing materials. Berlin Heidelberg, Germany: Springer.
Thomas, M. (1996). Chloride thresholds in marine concrete. Cement and Concrete Research,26(4), 513–519.
Article
Google Scholar
Thomas, M. D. A., & Bamforth, P. B. (1999). Modelling chloride diffusion in concrete: Effect of fly ash and slag. Cement and Concrete Research,29(4), 487–495.
Article
Google Scholar
Van, V. -T. -A., Rößler, C., Bui, D. -D., & Ludwig, H. -M. (2013). Mesoporous structure and pozzolanic reactivity of rice husk ash in cementitious system. Construction and Building Materials,43, 208–216.
Article
Google Scholar