Abdalla, J. A., Elsanosi, A., & Abdelwahab, A. (2007). Modeling and simulation of shear resistance of R/C beams using artificial neural network. *Journal of the Franklin Institute,*
*344*(5), 741–756.

Article
MATH
Google Scholar

Al-Gohi, B. H. A. (2008). *Time*-*dependent modeling of loss of flexural strength of corroding RC beams*. Master Thesis, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.

Arora, S., & Barak, B. (2009). *Computational complexity: a modern approach* (1st ed.). Cambridge, UK: Cambridge University Press.

Book
Google Scholar

Azad, A., Ahmad, S., & Al-Gohi, B. (2010). Flexural strength of corroded reinforced concrete beams. *Magazine of Concrete Research,*
*62*(6), 405–414.

Article
Google Scholar

Azad, A., Ahmad, S., & Azher, S. A. (2007). Residual strength of corrosion-damaged reinforced concrete beams. *ACI Material Journal,*
*104*(1), 40–47.

Google Scholar

Baughman, D. R. (1995). *Neural networks in bioprocessing and chemical engineering*. PhD Dissertation, Virginia Tech, Blacksburg, VA.

Beale, M., & Demuth, H. (2013). *Neural network toolbox user’s guide*. Natick, MA: The Mathworks Inc.

Google Scholar

Bies, R. R., Muldoon, M. F., Pollock, B. G., Manuck, S., Smith, G., & Sale, M. E. (2006). A genetic algorithm-based hybrid machine learning approach to model selection. *Journal of Pharmacokinetics and Pharmacodynamics,*
*33*(2), 195–221.

Article
Google Scholar

Cabrera, J. (1996). Deterioration of concrete due to reinforcement steel corrosion. *Cement & Concrete Composites,*
*18*(1), 47–59.

Article
Google Scholar

Castillo, E., Gutiérrez, J. M., Hadi, A. S., & Lacruz, B. (2001). Some applications of functional networks in statistics and engineering. *Technometrics,*
*43*, 10–24.

Article
MATH
MathSciNet
Google Scholar

Chen, H., Tsai, K., Qi, G., Yang, J., & Amini, F. (1995). Neural network for structure control. *Journal of Computing in Civil Engineering,*
*9*(2), 168–176.

Article
Google Scholar

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). *Introduction to algorithms*. Cambridge, MA: MIT press.

MATH
Google Scholar

Coronelli, D., & Gambarova, P. (2004). Structural assessment of corroded reinforced concrete beams: modeling guidelines. *Journal of Structural Engineering,*
*130*(8), 1214–1224.

Article
Google Scholar

Eskandari, H., Rezaee, M. R., & Mohammadnia, M. (2004). Application of multiple regression and artificial neural network techniques to predict shear wave velocity from wireline log data fora carbonate reservoir, South-West Iran. *CSEG Recorder,*
*42*, 48.

Google Scholar

Flood, I., & Kartam, N. (1994). Neural networks in civil engineering. II: Systems and application. *Journal of Computing in Civil Engineering,*
*8*(2), 149–162.

Article
Google Scholar

Guler, I. (2005). ECG beat classifier designed by combined neural network model. *Pattern Recognition,*
*38*(2), 199–208.

Article
MathSciNet
Google Scholar

Hasancebi, O., & Dumlupınar, T. (2013). Linear and nonlinear model updating of reinforced concrete T-beam bridges using artificial neural networks. *Computers & Structures,*
*119*, 1–11.

Article
Google Scholar

Hastie, T., Tibshirani, R., & Friedman, J. (2009). *The elements of statistical learning: data mining, inference, and prediction* (2nd ed.). Berlin, Germany: Springer.

Book
Google Scholar

Helmy, T., Anifowose, F. A., & Sallam, E. S. (2010). An efficient randomized algorithm for real-time process scheduling in PicOS operating system. In K. Elleithy (Ed.), *Advanced techniques in computing sciences and software engineering* (pp. 117–122). New York, NY: Springer.

Chapter
Google Scholar

Hsu, D. S., & Chung, H. T. (2002). Diagnosis of reinforced concrete structural damage base on displacement time history using the back-propagation neural network technique. *Journal of Computing in civil engineering*, *16*(1), 49–58.

Huang, R., & Yang, C. (1997). Condition assessment of reinforced concrete beams relative to reinforcement corrosion. *Cement & Concrete Composites,*
*19*(2), 131–137.

Article
Google Scholar

Inan, O. T., Giovangrandi, L., & Kovacs, G. T. (2006). Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features. *IEEE Transactions on Biomedical Engineering,*
*53*(12), 2507–2515.

Article
Google Scholar

Inel, M. (2007). Modeling ultimate deformation capacity of RC columns using artificial neural networks. *Engineering Structures,*
*29*(3), 329–335.

Article
Google Scholar

Jefferys, W. H. & Berger, J. O. (1991). *Sharpening Ockham’s Razor on a Bayesian Strop*. Technical Report #91-44C, Department of Statistics, Purdue University, West Lafayette, IN.

Jin, W.-L., & Zhao, Y.-X. (2001). Effect of corrosion on bond behavior and bending strength of reinforced concrete beams. *Journal of Zhejiang University (Science),*
*2*(3), 298–308.

Kang, H. T., & Yoon, C. J. (1994). Neural network approaches to aid simple truss design problems. *Computer-Aided Civil and Infrastructure Engineering,*
*9*(3), 211–218.

Article
MATH
Google Scholar

Kirkegaard, P. H. & Rytter, A. (1994). Use of neural networks for damage assessment in a steel mast. In *Proceedings of the 12th International Modal Analysis Conference of the*
*Society for Experimental Mechanics.* Honolulu, HI.

Li, L., & Jiao, L. (2002). Prediction of the oilfield output under the effects of nonlinear factors by artificial neural network. *Journal of Xi’an Petroleum Institute,*
*17*(4), 42–44.

MathSciNet
Google Scholar

Mangat, P. S., & Elgarf, M. S. (1999). Flexural strength of concrete beams with corroding reinforcement. *ACI Structural Journal,*
*96*(1), 149–158.

Google Scholar

Moghadassi, A., Parvizian, F., Hosseini, S. M., & Fazlali, A. (2009). A new approach for estimation of PVT properties of pure gases based on artificial neural network model. *Brazilian Journal of Chemical Engineering,*
*26*(1), 199–206.

Article
Google Scholar

Mohaghegh, S. (1995). Neural network: What it can do for petroleum engineers. *Journal of Petroleum Technology,*
*47*(1), 42–42.

Article
Google Scholar

Nascimento, C. A. O., Giudici, R., & Guardani, R. (2000). Neural network based approach for optimization of industrial chemical processes. *Computers & Chemical Engineering,*
*24*(9), 2303–2314.

Article
Google Scholar

Neaupane, K. M., & Adhikari, N. (2006). Prediction of tunneling-induced ground movement with the multi-layer perceptron. *Tunnelling and Underground Space Technology,*
*21*(2), 151–159.

Article
Google Scholar

Nokhasteh, M. A., & Eyre, J. R. (1992) The effect of reinforcement corrosion on the strength of reinforced concrete members. In *Proceedings of Structural integrity assessment*. London, UK: Elsevier Applied Science.

Ou, Y. C., Tsai, L. L., & Chen, H. H. (2012). Cyclic performance of large-scale corroded reinforced concrete beams. *Earthquake Engineering and Structural Dynamics,*
*41*(4), 593–604.

Article
Google Scholar

Pandey, P., & Barai, S. (1995). Multilayer perceptron in damage detection of bridge structures. *Computers & Structures,*
*54*(4), 597–608.

Article
MATH
Google Scholar

Petrus, J. B., Thuijsman, F., & Weijters, A. J. (1995). *Artificial neural networks: An introduction to ANN theory and practice*. Berlin, Germany: Springer.

Google Scholar

Phung, S. L., & Bouzerdoum, A. (2007). A pyramidal neural network for visual pattern recognition. *IEEE Transactions on Neural Networks,*
*18*(2), 329–343.

Article
Google Scholar

Rafiq, M., Bugmann, G., & Easterbrook, D. (2001). Neural network design for engineering applications. *Computers & Structures,*
*79*(17), 1541–1552.

Article
Google Scholar

Ravindrarajah, R. S., & Ong, K. (1987). Corrosion of steel in concrete in relation to bar diameter and cover thickness. *ACI Special Publication,*
*100*, 1667–1678.

Google Scholar

Revathy, J., Suguna, K., & Raghunath, P. N. (2009). Effect of corrosion damage on the ductility performance of concrete columns. *American Journal of Engineering and Applied Sciences,*
*2*(2), 324–327.

Article
Google Scholar

Rodriguez, J., Ortega, L., & Casal, J. (1997). Load carrying capacity of concrete structures with corroded reinforcement. *Construction and Building Materials,*
*11*(4), 239–248.

Article
Google Scholar

Tachibana, Y., Maeda, K.-I., Kajikawa, Y., & Kawamura, M. (1990). Mechanical behavior of RC beams damaged by corrosion of reinforcement. *Elsevier Applied Science*, 178–187.

Tsai, C.-H., & Hsu, D.-S. (2002). Diagnosis of reinforced concrete structural damage base on displacement time history using the back-propagation neural network technique. *Journal of Computing in Civil Engineering,*
*16*(1), 49–58.

Article
Google Scholar

Übeyli, E. D. (2009). Combined neural network model employing wavelet coefficients for EEG signals classification. *Digital Signal Processing,*
*19*(2), 297–308.

Article
Google Scholar

Uomoto, T., & Misra, S. (1988). Behavior of concrete beams and columns in marine environment when corrosion of reinforcing bars takes place. *ACI Special Publication,*
*109*, 127–146.

Google Scholar

VanLuchene, R., & Sun, R. (1990). Neural networks in structural engineering. *Computer-Aided Civil and Infrastructure Engineering,*
*5*(3), 207–215.

Article
Google Scholar

Wang, X. H., & Liu, X. L. (2008). Modeling the flexural carrying capacity of corroded RC beam. *Journal of Shanghai Jiaotong University (Science),*
*13*(2), 129–135.

Article
MATH
Google Scholar

Waszczyszyn, Z., & Ziemiański, L. (2001). Neural networks in mechanics of structures and materials—new results and prospects of applications. *Computers & Structures,*
*79*(22), 2261–2276.

Article
Google Scholar

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. *IEEE Transactions on Evolutionary Computation,*
*1*(1), 67–82.

Article
Google Scholar

Wu, X., Ghaboussi, J., & Garrett, J. H. (1992). Use of neural networks in detection of structural damage. *Computers & Structures,*
*42*(4), 649–659.

Article
MATH
Google Scholar