Acker P. (2001). Micromechanical analysis of creep and shrinkage mechanisms. In F. J. Ulm, Z. P. Bazant, F. H. Wittmann (Eds.), Creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials, 6th international conference (pp. 15–26) Amsterdam, Netherlands: CONCREEP@MIT Elsevier.
Alonso, C., & Fernandez, L. (2004). Dehydration and rehydration processes of cement paste exposed to high temperature environments. Journal of Materials Science,
39(9), 3015–3024.
Article
Google Scholar
Baykal, M. (2000). Implementation of durability models for portland cement concrete into performance-based specifications. Austin, TX: University of Texas at Austin.
Google Scholar
Bjornström, J., Martinelli, A., Matic, A., Borjesson, L., & Panas, I. (2004). Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement. Chemical Physics Letters,
392(1–3), 242–248.
Article
Google Scholar
Coenen, S., & Kruif, C. G. (1988). Synthesis and growth of colloidal silica particles. Journal of Colloid and Interface Science,
124(1), 104–110.
Article
Google Scholar
Flores, I., Sobolev K., Torres-Martinez L. M., Cuellar E. L., Valdez P. L., Zarazua E. (2010). Performances of cement systems with nano-SiO2 particles produced by using the sol-gel method. In Transportation Research Record: Journal of the Transportation Research Board, No. 2141 (pp. 10–14). Washington, DC: Transportation Research Board of the National Academies.
Gabrovsek, R., Vuk, T., & Kaucic, V. (2006). Evaluation of the hydration of Portland cement containing various carbonates by means of thermal analysis. Acta Chimica Slovenica,
53(2), 159–165.
Google Scholar
Gaitero, J. J., Campillo, I., & Guerrero, A. (2008). Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cement and Concrete Research,
38(8–9), 1112–1118.
Article
Google Scholar
Gaitero, J. J., Zhu, W., & Campillo, I. (2009). Multi-scale study of calcium leaching in cement pastes with silica nanoparticles. Nanotechnology in construction 3, Berlin (pp. 193–198). Heidelberg, Germany: Springer.
Chapter
Google Scholar
Gallucci, E., Zhang, X., & Scrivener, K. L. (2013). Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H). Cement and Concrete Research,
53, 185–195.
Article
Google Scholar
He, X., & Shi, X. (2008). Chloride permeability and microstructure of Portland cement mortars incorporating nanomaterials. Transportation Research Record: Journal of the Transportation Research Board,
2070, 13–21.
Article
Google Scholar
Hou, P., Cheng, X., Qian, J., & Shah, S. P. (2014). Effects and mechanisms of surface treatment of hardened cement-based materials with colloidal nano-SiO2 and its precursor. Construction and Building Materials,
53, 66–73.
Article
Google Scholar
Jain, J., & Neithalath, N. (2009). Analysis of calcium leaching behavior of plain and modified cement pastes in pure water. Cement and Concrete Composite,
31(3), 176–185.
Article
Google Scholar
Ji, T. (2005). Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cement and Concrete Research,
35(10), 1943–1947.
Article
Google Scholar
Jo, B., Kim, C., & Lim, J. (2007). Characteristics of cement mortar with nano-SiO2 particles. Construction and Building Materials,
21(6), 1351–1355.
Article
Google Scholar
Kong, D., Su, Y., Xi, D., Yang, Y., Wei, S., & Shah, S. P. (2013). Influence of nano-silica agglomeration on fresh properties of cement pastes. Construction and Building Materials,
43, 557–562.
Article
Google Scholar
Kontoleontos, F., Tsakiridis, P. E., Marinos, A., Kaloidas, V., & Katsioti, M. (2012). Influence of colloidal nano-silica on ultrafine cement hydration: Physicochemical and microstructural characterization. Construction and Building Materials,
35, 347–360.
Article
Google Scholar
Lam, L., Wong, Y. L., & Poon, C. S. (2000). Degree of hydration and gel/space ratio of high-volume fly ash/cement systems. Cement and Concrete Research,
30(5), 747–756.
Article
Google Scholar
Lin, W. T., Huang, R., Chang, J. J., & Lee, C. L. (2009). Effect of silica fume on the permeability of fiber cement composites. Journal of the Chinese Institute of Engineers,
32(4), 531–541.
Article
Google Scholar
Neville, A. M. (1981). Properties of concrete (3rd ed., pp. 257–279). London, UK: ELBS with Longman.
Google Scholar
Olsona, R. A., & Jennings, H. M. (2001). Estimation of C-S-H content in a blended cement paste using water adsorption. Cement and Concrete Research,
31(3), 351–356.
Article
Google Scholar
Pichler, B., Hellmich, C., Eberhardsteiner, J., Wasserbauer, J., Termkhajornkit, P., Barbarulo, R., & Chanvillard, G. (2013). Effect of gel–space ratio and microstructure on strength of hydrating cementitious materials: An engineering micromechanics approach. Cement and Concrete Research,
45, 55–68.
Article
Google Scholar
Powers, T. C., & Brownyard, T. L. (1948). Studies of the physical properties of hardened Portland cement paste. Research Laboratories of the Portland Cement Association Bulletin,
22, 101–992.
Google Scholar
Quercia, G., Spiesz, P., Hüsken, G., & Brouwers, H. J. H. (2014). SCC modification by use of amorphous nano-silica. Cement & Concrete Composites,
45, 69–81.
Article
Google Scholar
Ramachandran, V. S., Paroli, R. M., Beaudoin, J. J., & Delgado, A. H. (Eds.). (2003). Handbook of thermal analysis of construction materials. Norwich: Noyes Publications.
Google Scholar
Sanchez, F., & Sobolev, K. (2010). Nanotechnology in concrete—A review. Construction and Building Materials,
24(11), 2060–2071.
Article
Google Scholar
Savas B. Z. (2000). Effects of microstructure on durability of concrete, Ph.D. thesis. Raleigh: North Carolina State University.
Shi, X., Xie, N., Fortune, K., & Gong, J. (2012). Durability of steel reinforced concrete in chloride environments: An overview. Construction and Building Materials,
30, 125–138.
Article
Google Scholar
Singh, L. P., Bhattacharyya, S. K., & Ahalawat, S. (2012a). Preparation of size controlled silica nano particles and its functional role in cementitious system. Journal of Advanced Concrete Technology,
10(11), 345–352.
Article
Google Scholar
Singh, L. P., Bhattacharyya, S. K., Mishra, G., & Ahalawat, S. (2012b). Reduction of calcium leaching in cement hydration process using nanomaterials. Materials Technology,
27(3), 233–238.
Article
Google Scholar
Singh, L. P., Karade, S. R., Bhattacharyya, S. K., & Ahalawat, S. (2013). Beneficial role of nano-silica in cement based materials—a review. Construction and Building Materials,
47, 1069–1077.
Article
Google Scholar
Tan, B., Lehmler, H. J., Vyas, S. M., Knuston, B. L., & Rankin, S. E. (2005). Controlling nanopore size and shape by fluorosurfactant templating of silica. Chemistry of Materials,
17(4), 916–925.
Article
Google Scholar
Taylor, H. F. W. (1997). Cement chemistry. London, UK: Thomas Telford.
Book
Google Scholar
Toutanji, H., Delatte, N., & Aggoun, S. (2004). Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete. Cement and Concrete Research,
34(2), 311–319.
Article
Google Scholar
Venkatathri, N., & Nanjundan, S. (2009). Synthesis and characterization of a mesoporous silica microsphere from polystyrene. Materials Chemistry and Physics,
113(2–3), 933–936.
Article
Google Scholar
Young, J. F., & Hansen, W. (1987). Volume relationships for C-S-H formation based on hydration stoichiometries. Materials Research Society,
85, 313.
Article
Google Scholar