Alarcon-Ruiz, L., Platret, G., Massieu, E., & Ehrlacher, A. (2005). The use of thermal analysis in assessing the effect of temperature on a cement paste. Cement and Concrete Research,
35(3), 609–613.
Article
Google Scholar
Alawad, O., Alhozaimy, A., Jaafar, M., Al-Negheimish, A., & Aziz, F. (2014). Microstructure analyses of autoclaved ground dune sand–Portland cement paste. Construction and Building Materials,
65, 14–19.
Article
Google Scholar
Alawad, O. A., Alhoziamy, A., Jaafar, M. S., Aziz, A., Noor, F., & Al-Negheimish, A. (2015). Blended cement containing high volume ground dune sand and ground granulated blast furnace slag for autoclave concrete industry. Applied Mechanics and Materials,
754–755(1), 395–399.
Article
Google Scholar
Alhozaimy, A., Al-Negheimish, A., Alawad, O., Jaafar, M., & Noorzaei, J. (2012). Binary and ternary effects of ground dune sand and blast furnace slag on the compressive strength of mortar. Cement & Concrete Composites,
34(6), 734–738.
Article
Google Scholar
Assarsson, G. O., & Rydberg, E. (1956). Hydrothermal reactions between calcium hydroxide and amorphous silica. The Journal of Physical Chemistry,
60(4), 397–404.
Article
Google Scholar
Bakharev, T., Sanjayan, J., & Cheng, Y.-B. (1999). Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cement and Concrete Research,
29(10), 1619–1625.
Article
Google Scholar
Berardi, M. C., Chiocchio, G., & Collepardi, M. (1975). The influence of precuring on the autoclave hydration of quartz-tricalcium silicate mixtures. Cement and Concrete Research,
5(5), 481–487.
Article
Google Scholar
Bresson, B., Meducin, F., Zanni, H., & Noik, C. (2002). Hydration of tricalcium silicate (C3S) at high temperature and high pressure. Journal of materials science,
37(24), 5355–5365.
Article
Google Scholar
Chae, S. R., Moon, J., Yoon, S., Bae, S., Levitz, P., Winarski, R., & Monteiro, P. J. (2013). Advanced nanoscale characterization of cement based materials using X-ray synchrotron radiation: a review. International Journal of Concrete Structures and Materials,
7(2), 95–110.
Article
Google Scholar
Divsholi, B. S., Lim, T. Y. D., & Teng, S. (2014). Durability properties and microstructure of ground granulated blast furnace slag cement concrete. International Journal of Concrete Structures and Materials,
8(2), 157–164.
Article
Google Scholar
Eilers, L. H., Nelson, E. B., & Moran, L. K. (1983). High-temperature cement compositions-pectolite, scawtite, truscottite, or xonotlite: Which do you want? Journal of Petroleum Technology,
35(7), 1373–1377.
Article
Google Scholar
Englehardt, J. D., & Peng, C. (1995). Pozzolanic filtration/solidification of radionuclides in nuclear reactor cooling water. Waste Management,
15(8), 585–592.
Article
Google Scholar
Erdoğdu, Ş., & Kurbetci, Ş. (2005). Influence of cement composition on the early age flexural strength of heat-treated mortar prisms. Cement & Concrete Composites,
27(7), 818–822.
Google Scholar
Grabowski, E., & Gillott, J. (1989). Effect of replacement of silica flour with silica fume on engineering properties of oilwell cements at normal and elevated temperatures and pressures. Cement and Concrete Research,
19(3), 333–344.
Article
Google Scholar
Gutteridge, W. A., & Dalziel, J. A. (1990). Filler cement: the effect of the secondary component on the hydration of Portland cement: part I. A fine non-hydraulic filler. Cement and Concrete Research,
20(5), 778–782.
Article
Google Scholar
Hanson, J. (1963). Optimum steam curing procedure in precasting plants. ACI Journal Proceedings, 60(1), 75–100.
Google Scholar
Hewlett, P. (2003). Lea’s chemistry of cement and concrete. Oxford, UK: Butterworth-Heinemann.
Google Scholar
Hope, B. B. (1981). Autoclaved concrete containing flyash. Cement and Concrete Research,
11(2), 227–233.
Article
Google Scholar
Jupe, A. C., Wilkinson, A. P., Luke, K., & Funkhouser, G. P. (2008). Class H cement hydration at 180 °C and high pressure in the presence of added silica. Cement and Concrete Research,
38(5), 660–666.
Article
Google Scholar
Kalousek, G. L. (1954). Studies on the cementious phases of autoclaved concrete products made of different raw materials. ACI Journal Proceedings, 50(1), 365–378.
Kar, A., Ray, I., Halabe, U. B., Unnikrishnan, A., & Dawson-Andoh, B. (2014). Characterizations and quantitative estimation of alkali-activated binder paste from microstructures. International Journal of Concrete Structures and Materials,
8(3), 213–228.
Article
Google Scholar
Kjellsen, K. O., Detwiler, R. J., & Gjørv, O. E. (1991). Development of microstructures in plain cement pastes hydrated at different temperatures. Cement and Concrete Research,
21(1), 179–189.
Article
Google Scholar
Klimesch, D. S., & Ray, A. (1998). Hydrogarnet formation during autoclaving at 180 °C in unstirred metakaolin-lime-quartz slurries. Cement and Concrete Research,
28(8), 1109–1117.
Article
Google Scholar
Klimesch, D. S., Ray, A., & Sloane, B. (1996). Autoclaved cement-quartz pastes: the effects on chemical and physical properties when using ground quartz with different surface areas part I: quartz of wide particle size distribution. Cement and Concrete Research,
26(9), 1399–1408.
Article
Google Scholar
Kołakowski, K., De Preter, W., Van Gemert, D., Lamberts, L., & Van Rickstal, F. (1994). Low shrinkage cement based building components. Cement and Concrete Research,
24(4), 765–775.
Article
Google Scholar
Kondo, R., Abo-El-Enein, S. A., & Daimon, M. (1975). Kinetics and mechanisms of hydrothermal reaction of granulated blast furnace slag. Bulletin of the Chemical Society of Japan,
48(1), 222–226.
Article
Google Scholar
Kyritsis, K., Meller, N., & Hall, C. (2009). Chemistry and morphology of hydrogarnets formed in cement based CASH hydroceramics cured at 200 °C to 350 °C. Journal of the American Ceramic Society,
92(5), 1105–1111.
Article
Google Scholar
Lange, F., Mörtel, H., & Rudert, V. (1997). Dense packing of cement pastes and resulting consequences on mortar properties. Cement and Concrete Research,
27(10), 1481–1488.
Article
Google Scholar
Liu, B., Xie, Y., & Li, J. (2005). Influence of steam curing on the compressive strength of concrete containing supplementary cementing materials. Cement and Concrete Research,
35(5), 994–998.
Article
Google Scholar
Luke, K. (2004). Phase studies of pozzolanic stabilized calcium silicate hydrates at 180 °C. Cement and Concrete Research,
34(9), 1725–1732.
Article
Google Scholar
Mehta, P. K., & Monteiro, P. J. (2006). Concrete: microstructure, properties, and materials. New York, NY: The McGraw-Hill Companies Inc.
Google Scholar
Menzel, C. A. (1934). Strength and volume change of steam-cured portland cement mortar and concrete. ACI Journal Proceedings, 31(11), 125–148.
Google Scholar
Mindess, S., Young, J. F., & Darwin, D. (1981). Concrete. Englewood Cliffs: Prentice-Hall.
Google Scholar
Mostafa, N. Y., Shaltout, A. A., Omar, H., & Abo-El-Enein, S. A. (2009). Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1 nm tobermorites. Journal of Alloys and Compounds,
467(1), 332–337.
Article
Google Scholar
Murmu, M., & Singh, S. P. (2014). Hydration products, morphology and microstructure of activated slag cement. International Journal of Concrete Structures and Materials,
8(1), 61–68.
Article
Google Scholar
Neville, A. M. (1973). Properties of concrete. London, UK: Pitman.
Google Scholar
Oner, A., & Akyuz, S. (2007). An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement & Concrete Composites,
29(6), 505–514.
Article
Google Scholar
Saikia, N., Kato, S., & Kojima, T. (2006). Thermogravimetric investigation on the chloride binding behaviour of MK–lime paste. Thermochimica Acta,
444(1), 16–25.
Article
Google Scholar
Sanders, L. D., & Smothers, W. J. (1957). Effect of tobermorite on the mechanical strength of autoclaved portland cement-silica mixtures*. ACI Journal Proceedings, 54(8), 127–139.
Google Scholar
Shi, C., & Hu, S. (2003). Cementitious properties of ladle slag fines under autoclave curing conditions. Cement and Concrete Research,
33(11), 1851–1856.
Article
Google Scholar
Singh, L. P., Goel, A., Bhattachharyya, S. K., Ahalawat, S., Sharma, U., & Mishra, G. (2015). Effect of morphology and dispersibility of silica nanoparticles on the mechanical behaviour of cement mortar. International Journal of Concrete Structures and Materials,
9(2), 207–217.
Article
Google Scholar
Taylor, H. F. W. (1997). Cement chemistry. London, UK: Telford Services Ltd.
Book
Google Scholar
Topçu, İ. B., & Uygunoğlu, T. (2007). Properties of autoclaved lightweight aggregate concrete. Building and Environment,
42(12), 4108–4116.
Article
Google Scholar
Wee, T. H., Suryavanshi, A. K., & Tin, S. S. (2000). Evaluation of rapid chloride permeability test (RCPT) results for concrete containing mineral admixtures. ACI Materials Journal, 97(2), 221–232.
Google Scholar
Wongkeo, W., Thongsanitgarn, P., & Chaipanich, A. (2012). Compressive strength and drying shrinkage of fly ash-bottom ash-silica fume multi-blended cement mortars. Materials and Design,
36, 655–662.
Article
Google Scholar
Yang, Q., Zhang, S., Huang, S., & He, Y. (2000). Effect of ground quartz sand on properties of high-strength concrete in the steam-autoclaved curing. Cement and Concrete Research, 30(12), 1993–1998.
Article
Google Scholar
Yazici, H. (2007). The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures. Building and Environment,
42(5), 2083–2089.
Article
Google Scholar
Yazıcı, H., Yiğiter, H., Karabulut, A. Ş., & Baradan, B. (2008). Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete. Fuel,
87(12), 2401–2407.
Article
Google Scholar