Abdelnaby, A., & Elnashai, A. (2014). Performance of degrading reinforced concrete frame systems under Tohoku and Christchurch earthquake sequences. Journal of Earthquake Engineering
18(7), 1009–1036. doi:10.1080/13632469.2014.923796.
Article
Google Scholar
Andrawes, B., Shin, M., & Wierschem, N. (2009). Active confinement of reinforced concrete bridge columns using shape memory alloys. Journal of Bridge Engineering
15(1), 81–89. doi:10.1061/ASCEBE.1943-5592.0000038.
Article
Google Scholar
Arias, A. (1970). A measure of earthquake intensity. In R. J. Hansen (Ed.), Seismic design for nuclear power plants (pp. 438–483). Cambridge, MA: MIT Press.
Google Scholar
Aschheim, M., & Black, E. (1999). Effects of prior earthquake damage on response of simple stiffness-degrading structures. Earthquake Spectra
15(1), 1–24.
Article
Google Scholar
ATC-63. (2009). Quantification of building seismic performance factors. Redwood City, CA: FEMA P695.
Google Scholar
Baker, J. W., & Cornell, C. A. (2006). Vector-valued ground motion intensity measures for probabilistic seismic demand analysis. Berkeley, CA: Pacific Earthquake Engineering Research Center, College of Engineering, University of California.
Baker, J. W., Lin, T., Shahi, S. K., & Jayaram, N. (2011). New ground motion selection procedures and selection motions for the PEER transportation research program. PEER report 2011/03, Berkeley, CA: Pacific Earthquake Engineering Research Center.
Bearman, C. F. (2012). Post-earthquake assessment of reinforced concrete frames. M.S. Thesis, Department of Civil and Environmental Engineering, University of Washington, Seattle, WA.
Berry, M. P., & Eberhard, M. O. (2007). Performance modeling strategies for modern reinforced concrete bridge columns. PEER report 2007/07. Berkeley, CA: Pacific Engineering Research Center, University of California.
Bianchi, F., Sousa, R., & Pinho, R. (2011). Blind prediction of a full-scale RC bridge column tested under dynamic conditions. In Proceedings of the 3rd international conference on computational methods in structural dynamics and earthquake engineering (COMPDYN 2011) Corfu, Greece, Paper no. 294.
Billah, A. M., Alam, M. S., & Bhuiyan, M. R. (2013). Fragility analysis of retrofitted multicolumn bridge bent subjected to near-fault and far-field ground motion. Journal of Bridge Engineering. doi:10.1061/(ASCE)BE.1943-5592.0000452.
Google Scholar
Buckle, I., Friedland, I., Mander, J., Martin, G., Nutt, R., & Power, M. (2006). Seismic retrofitting manual for highway structures: Part 1-bridges (No. FHWA-HRT-06-032).
Calderone, A., Lehman, D. E., & Moehle, J. P. (2001). Behavior of reinforced concrete bridge columns having varying aspect ratios and varying lengths of confinement. Berkeley, CA: Pacific Earthquake Engineering Research Center.
California Department of Transportation. (2004). Caltrans bridge design specification. Sacramento, CA: California Department of Transportation.
Google Scholar
Chang, L., Peng, F., Ouyang, Y., Elnashai, A. S., & Spencer, B. F, Jr. (2012). Bridge seismic retrofit program planning to maximize postearthquake transportation network capacity. Journal of Infrastructure Systems
18(2), 75–88.
Article
Google Scholar
Cho, J. Y., & Pincheira, J. A. (2006). Inelastic analysis of reinforced concrete columns with short lap splices subjected to reversed cyclic loads. ACI Structural Journal
103(2), 280–290.
Google Scholar
Chopra, A. K., & Goel, R. K. (2002). A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering and Structural Dynamics
31(3), 561–582.
Article
Google Scholar
Cornell, C. A., Jalayer, F., Hamburger, R. O., & Foutch, D. A. (2002). Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines. Journal of Structural Engineering
128(4), 526–533.
Article
Google Scholar
Di Sarno, L. (2013). Effects of multiple earthquakes on inelastic structural response. Engineering Structures
56, 673–681.
Article
Google Scholar
Dutta, A., & Mander, J. B. (1998). Seismic fragility analysis of highway bridges. In Proceedings of the INCEDE-MCEER center-to-center project workshop on earthquake engineering Frontiers in transportation systems (pp. 22–23).
ElGawady, M., Endeshaw, M., McLean, D., & Sack, R. (2009). Retrofitting of rectangular columns with deficient lap splices. Journal of Composites for Construction
14(1), 22–35.
Article
Google Scholar
Fakharifar, M., Chen, G., Arezoumandi, M., & ElGawady, M. (2015a). Hybrid jacketing for rapid repair of seismically damaged reinforced concrete columns. Transportation Research Record: Journal of the Transportation Research Board. doi:10.3141/2522-07.
Google Scholar
Fakharifar, M., Chen, G., Lin, Z., & Woolsey, Z. (2014a). Behavior and strength of passively confined concrete filled tubes. In The 10th U.S. National conference on earthquake engineering: July 21–25, 2014, Anchorage, AL.
Fakharifar, M., Chen, G., Sneed, L., & Dalvand, A. (2015b). Seismic performance of post-mainshock FRP/steel repaired RC bridge columns subjected to aftershocks. Composites Part B: Engineering. doi:10.1016/j.compositesb.2014.12.010.
Google Scholar
Fakharifar, M., Dalvand, A., Arezoumandi, M., Sharbatdar, M. K., Chen, G., & Kheyroddin, A. (2014b). Mechanical properties of high performance fiber reinforced cementitious composites. Construction and Building Materials
71, 510–520. doi:10.1016/j.conbuildmat.2014.08.068.
Article
Google Scholar
Fakharifar, M., Dalvand, A., Sharbatdar, M. K., Chen, G., & Sneed, L. (2015c). Innovative hybrid reinforcement constituting conventional longitudinal steel and FRP stirrups for improved seismic strength and ductility of RC structures. Frontiers of Structural and Civil Engineering. doi:10.1007/s11709-015-0295-9.
Google Scholar
Fakharifar, M., Sharbatdar, M. K., & Lin, Z. (2013). Seismic performance and global ductility of reinforced concrete frames with CFRP laminates retrofitted joints. In Structures congress 2013 (pp. 2080–2093). ASCE.
Fakharifar, M., Sharbatdar, M. K., Lin, Z., Dalvand, A., Sivandi-Pour, A., & Chen, G. (2014c). Seismic performance and global ductility of RC frames rehabilitated with retrofitted joints by CFRP laminates. Earthquake Engineering and Engineering Vibration,
13(1), 59–73.
Article
Google Scholar
FEMA 356. (2000). Prestandard and commentary for the seismic rehabilitation of buildings. Prepared by ASCE for Federal Emergency Management Agency, Washington, D.C.
Ferracuti, B., Pinho, R., Savoia, M., & Francia, R. (2009). Verification of displacement-based adaptive pushover through multi-ground motion incremental dynamic analyses. Engineering Structures
31(8), 1789–1799.
Article
Google Scholar
Ferracuti, B., & Savoia, M. (2005). Cyclic behaviour of FRP-wrapped columns under axial and flexural loadings. In Proceedings of the international conference on fracture, Turin, Italy.
Filippou, F. C., Popov, E. P., & Bertero, V. V. (1983). Effects of bond deterioration on hysteretic behaviour of reinforced concrete joints. Report EERC 83-19. Berkeley, CA: Earthquake Engineering Research Center, University of California.
Fragiadakis, M., Pinho, R., & Antoniou, S. (2008). Modelling inelastic buckling of reinforcing bars under earthquake loading. In M. Papadrakakis, D. C. Charmpis, N. D. Lagaros, Y. Tsompanakis, & A. A. Balkema (Eds.), Progress in computational dynamics and earthquake engineering. Leiden, Netherlands: Taylor & Francis.
Grelle, S. V., & Sneed, L. H. (2013). Review of anchorage systems for externally bonded FRP laminates. International Journal of Concrete Structures and Materials
7(1), 17–33. doi:10.1007/s40069-013-0029-0.
Harajli, M., Hamad, B., & Karam, K. (2002). Bond-slip response of reinforcing bars embedded in plain and fiber concrete. Journal of Materials in Civil Engineering
14(6), 503–511.
Article
Google Scholar
Haroun, M. A., & Elsanadedy, H. M. (2005). Fiber-reinforced plastic jackets for ductility enhancement of reinforced concrete bridge columns with poor lap-splice detailing. Journal of Bridge Engineering
10(6), 749–757.
Article
Google Scholar
Haselton, C. B., Liel, A. B., Taylor Lange, S., & Deierlein, G. G. (2008). Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings. PEER report 2007/03. Berkeley, CA: Pacific Engineering Research Center, University of California.
HAZUS-MH. (2003). Multi-hazard loss estimation methodology earthquake model. HAZUS-MH MR3 technical manual. Washington, DC: Federal Emergency Management Agency (FEMA).
He, R., Sneed, L. H., & Belarbi, A. (2013). Rapid repair of severely damaged RC columns with different damage conditions: An experimental study. International Journal of Concrete Structures and Materials
7(1), 35–50. doi:10.1007/s40069-013-0030-7.
Article
Google Scholar
Huang, W., & Andrawes, B. (2014). Seismic performance of SMA retrofitted multiple-frame RC bridges subjected to stong mainshock-aftershock sequences. In 10th U.S. National conference on earthquake engineering (10NCEE) Anchorage, Alaska.
Jirawattanasomkul, T. (2013). Ultimate shear behavior and modeling of reinforced concrete members jacketed by fiber reinforced polymer and steel. PhD thesis. Hokkaido University, Sapporo, Japan.
Kent, D. C., & Park, R. (1973). Cyclic load behaviour of reinforcing steel. Strain
9(3), 98–103.
Article
Google Scholar
Kunnath, S. K., El-Bahy, A., Taylor, A. W., & Stone, W. C. (1997). Cumulative seismic damage of reinforced concrete bridge piers. In Technical report NCEER (No. 97-0006). US National Center for Earthquake Engineering Research.
Lee, D. H., Kim, D., & Lee, K. (2009). Analytical approach for the earthquake performance evaluation of repaired/retrofitted RC bridge piers using time-dependent element. Nonlinear Dynamics
56(4), 463–482.
Article
MATH
Google Scholar
Lee, D. H., Park, J., Lee, K., & Kim, B. H. (2011). Nonlinear seismic assessment for the post-repair response of RC bridge piers. Composites Part B Engineering
42(5), 1318–1329.
Article
MathSciNet
Google Scholar
Li, Y., Song, R., & Van De Lindt, J. W. (2014). Collapse fragility of steel structures subjected to earthquake mainshock-aftershock sequences. Journal of Structural Engineering
140(12), 04014095.
Article
Google Scholar
Li, Y., Song, R., van de Lindt, J., Nazari, N., & Luco, N. (2012). Assessment of wood and steel structures subjected to earthquake mainshock-aftershock. In 15th world conference on earthquake engineering, Lisbon, Portugal.
Lin, Z., Fakhairfar, M., Wu, C., Chen, G., Bevans, W., Gunasekaran, A. V. K., & Sedighsarvestani, S. (2013). Design, construction and load testing of the Pat Daly Road Bridge in Washington County, MO, with internal glass fiber reinforced polymers reinforcement. Report no. NUTC R275.
Mackie, K. R., & Stojadinovic, B. (2007). R-factor parameterized bridge damage fragility curves. Journal of Bridge Engineering
12(4), 500–510.
Article
Google Scholar
Madas, P., & Elnashai, A. S. (1992). A new passive confinement model for transient analysis of reinforced concrete structures. Earthquake Engineering and Structural Dynamics
21, 409–431.
Article
Google Scholar
Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical stress–strain model for confined concrete. Journal of Structural Engineering
114(8), 1804–1826.
Article
Google Scholar
Marson, J., & Bruneau, M. (2004). Cyclic testing of concrete-filled circular steel bridge piers having encased fixed-based detail. Journal of Bridge Engineering, ASCE
9(1), 14–23.
Article
Google Scholar
Martinez-Rueda, J. E., & Elnashai, A. S. (1997). Confined concrete model under cyclic load. Materials and Structures
30(197), 139–147.
Article
Google Scholar
Menegotto, M., & Pinto, P. E. (1973). Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending. In Symposium on the resistance and ultimate deformability of structures acted on by well defined repeated loads, international association for bridge and structural engineering, Zurich, Switzerland (pp. 15–22).
Nazari, N., van de Lindt, J. W., & Li, Y. (2013). Effect of mainshock-aftershock sequences on woodframe building damage fragilities 1. Journal of Performance of Constructed Facilities
29(1), 04014036.
Article
Google Scholar
Nielson, B. G., & DesRoches, R. (2007). Analytical seismic fragility curves for typical bridges in the central and southeastern United States. Earthquake Spectra
23(3), 615–633.
Article
Google Scholar
PEER. (2010). Retrieved July 24, 2014, from http://nisee2.berkeley.edu/peer/prediction_contest/?page_id=25.
Pinto, A. V., Verzeletti, G., Pegon, P., Magonette, G., Negro, P., & Guedes, J., (1996). Pseudo-dynamic testing of large-scale R/C Bridges. Report EUR 16378, Ispra (VA), Italy.
Priestley, M. J. N., Calvi, G. M., & Kowalsky, M. J. (2007). Displacement based seismic design of structures. Pavia, Italy: Istituto Universitario di Studi Superiori Press.
Priestley, M. N., Seible, F., & Calvi, G. M. (1996). Seismic design and retrofit of bridges. New York, NY: Wiley.
Ribeiro, F. L., Barbosa, A. R., & Neves, L. C. (2014). Application of reliability-based robustness assessment of steel moment resisting frame structures under post-mainshock cascading events. Journal of Structural Engineering
140(8), A4014008.
Article
Google Scholar
Rodriguez, M. E., Botero, J. C., & Villia, J. (1999). Cyclic stress–strain behavior of reinforcing steel including effect of buckling. Journal of Structural Engineering
125(6), 605–612.
Article
Google Scholar
Saatcioglu, M., & Grira, M. (1999). Confinement of reinforced concrete columns with welded reinforced grids. ACI Structural Journal
96(1), 29–39.
Google Scholar
Saatcioglu, M., & Yalcin, C. (2003). External prestressing concrete columns for improved seismic shear resistance. Journal of Structural Engineering
129(8), 1057–1070.
Article
Google Scholar
Schoettler, M. J., Restrepo, J. I., Guerrini, G., Duck, D. E., & Carrea, F. (2012). A full-scale, single-column bridge bent tested by shake-table excitation. Las Vegas, NV: Center for Civil Engineering Earthquake Research, Department of Civil Engineering, University of Nevada.
Scholz, C. H. (2002). The mechanics of earthquakes and faulting. Cambridge, MA: Cambridge University Press.
Scott, M. H., & Fenves, G. L. (2006). Plastic hinge integration methods for force-based beam–column elements. Journal of Structural Engineering
132(2), 244–252.
Article
Google Scholar
Seismosoft. (2013a). SeismoStruct—A computer program for static and dynamic nonlinear analysis of framed structures. www.seismosoft.com.
Seismosoft. (2013b). SeismoStruct ver. 6.0 and 7.0—Verification report.
Shamsabadi, A., Khalili-Tehrani, P., Stewart, J. P., & Taciroglu, E. (2009). Validated simulation models for lateral response of bridge abutments with typical backfills. Journal of Bridge Engineering
15(3), 302–311. doi:10.1061/(ASCE)BE.1943-5592.0000058.
Article
Google Scholar
Shinozuka, M., Feng, M. Q., Kim, H. K., & Kim, S. H. (2000). Nonlinear static procedure for fragility curve development. Journal of Engineering Mechanics
126(12), 1287–1295.
Article
Google Scholar
Sivaselvan, M., & Reinhorn, A. M. (1999). Hysteretic models for cyclic behavior of deteriorating inelastic structures. Report MCEER-99-0018, MCEER/SUNY/Buffalo.
Sivaselvan, M., & Reinhorn, A. M. (2001). Hysteretic models for deteriorating inelastic structures. Journal of Engineering Mechanics ASCE 126(6), 633–640, with discussion by Wang and Foliente and closure in Vol. 127, No. 11.
Spoelstra, M., & Monti, G. (1999). FRP-confined concrete model. Journal of Composites for Construction, ASCE
3, 143–150.
Article
Google Scholar
Tehrani, P., & Mitchell, D. (2013). Seismic risk assessment of four-span bridges in Montreal designed using the Canadian Bridge design code. Journal of Bridge Engineering
19(8), A4014002.
Article
Google Scholar
Terzic, V., & Stojadinovic, B. (2013). Hybrid simulation of bridge response to three-dimensional earthquake excitation followed by truck load. Journal of Structural Engineering
140(8), A4014010.
Article
Google Scholar
USGS. (2012). United States Geological Survey. http://www.usgs.gov/.
Vamvatsikos, D., & Cornell, C. A. (2002). Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics
31(3), 491–514.
Article
Google Scholar
Villaverde, R. (2007). Methods to assess the seismic collapse capacity of building structures: State of the art. Journal of Structural Engineering
133(1), 57–66.
Article
Google Scholar
Vosooghi, A., & Saiidi, M. (2010). Post-earthquake evaluation and emergency repair of damaged RC bridge columns using CFRP materials. Rep. no. CCEER-10-05. Reno, NV: Center for Civil Engineering Earthquake Research, Dept. of Civil Engineering, Univ. of Nevada.
Vosooghi, A., & Saiidi, M. S. (2012). Design guidelines for rapid repair of earthquake-damaged circular RC bridge columns using CFRP. Journal of Bridge Engineering
18(9), 827–836. doi:10.1061/(ASCE)BE.1943-5592.0000426.
Article
Google Scholar
White, T., & Ventura, C. E. (2004). Ground motion sensitivity of a Vancouver-style high rise. Canadian Journal of Civil Engineering
31, 292–307.
Article
Google Scholar
Xiao, Y., & Ma, R. (1997). Seismic retrofit of RC circular columns using prefabricated composite jacketing. Journal of Structural Engineering
123(10), 1357–1364.
Article
Google Scholar
Yang, J. (2009). Nonlinear responses of high-rise buildings in giant subduction earthquakes. PhD thesis. California Institute of Technology, CA, USA.
Yankelevsky, D. Z., & Reinhardt, H. W. (1989). Uniaxial behavior of concrete in cyclic tension. Journal of Structural Engineering, ASCE
115(1), 166–182.
Article
Google Scholar
Ying, X. F., Chen, G., Silva, P. F., LaBoube, R., & Yen, P. W. (2006). Thin steel sheet wrapping on RC columns and steel plate strengthening on beam-column joints for seismic ductility and capacity improvements. In National conference on earthquake engineering, paper no. 513, conference proceeding, San Fransisco, CA, USA, April 18–22, 2006.
Youm, K. S., Lee, H. E., & Choi, S. (2006). Seismic performance of repaired RC columns. Magazine of Concrete Research
58(5), 267–276.
Article
Google Scholar