Adenot, F., & Buil, M. (1992). Modelling of the corrosion of the cement paste by deionized water. Cement and Concrete Research,
22, 489–496. doi:10.1016/0008-8846(92)90092-a.
Article
Google Scholar
ASTM C39/C39M-14a, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.
ASTM C496/C496M-11, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens.
Babaahmadi, A., Tang, L., Abbas, Z., Zack, T., & Mårtensson, P. (2015). Development of an electro-chemical accelerated ageing method for leaching of calcium from cementitious materials. Materials and Structures. doi:10.1617/s11527-015-0531-8.
Google Scholar
Berner, U. R. (1992). Evolution of pore water chemistry during degradation of cement in a radioactive waste repository environment. Waste Management,
12, 201–219. doi:10.1016/0956-053x(92)90049-o.
Article
Google Scholar
Carde, C., Escadeillas, G., & François, R. (1997). Use of ammonium nitrate solution to simulate and accelerate the leaching of cement pastes due to deionized water. Magazine of Concrete Research,
49, 295–301.
Article
Google Scholar
Carde, C., & François, R. (1997). Effect of the leaching of calcium hydroxide from cement paste on mechanical and physical properties. Cement and Concrete Research,
27, 539–550. doi:10.1016/s0008-8846(97)00042-2.
Article
Google Scholar
Carde, C., François, R., & Torrenti, J.-M. (1996). Leaching of both calcium hydroxide and C-S-H from cement paste: Modeling the mechanical behavior. Cement and Concrete Research,
26, 1257–1268. doi:10.1016/0008-8846(96)00095-6.
Article
Google Scholar
Choi, Y. S., & Yang, E. I. (2013). Effect of calcium leaching on the pore structure, strength, and chloride penetration resistance in concrete specimens. Nuclear Engineering and Design,
259, 126–136. doi:10.1016/j.nucengdes.2013.02.049.
Article
Google Scholar
Emborg, M., Jonasson, J. E., & Knutsson, S. (2007) Long-term stability due to freezing and thawing of concrete and bentonite at the disposal of low and intermediate level nuclear waste in SFR 1 (in Swedish) vol. R-07-60. SKB Technical Report R-07-60, Swedish Nuclear and Waste Management Company
EN 933-1 Tests for geometrical properties of aggregates.
Faucon, P., Adenot, F., Jacquinot, J. F., Petit, J. C., Cabrillac, R., & Jorda, M. (1998). Long-term behaviour of cement pastes used for nuclear waste disposal: Review of physico-chemical mechanisms of water degradation. Cement and Concrete Research,
28, 847–857. doi:10.1016/s0008-8846(98)00053-2.
Article
Google Scholar
Faucon, P., Le Bescop, P., Adenot, F., Bonville, P., Jacquinot, J. F., Pineau, F., & Felix, B. (1996). Leaching of cement: Study of the surface layer. Cement and Concrete Research,
26, 1707–1715. doi:10.1016/S0008-8846(96)00157-3.
Article
Google Scholar
Gustafson, G., Hagström, M., & Abbas, Z. (2008). Beständighet av cementinjektering
Haga, K., Sutou, S., Hironaga, M., Tanaka, S., & Nagasaki, S. (2005). Effects of porosity on leaching of Ca from hardened ordinary Portland cement paste. Cement and Concrete Research,
35, 1764–1775. doi:10.1016/j.cemconres.2004.06.034.
Article
Google Scholar
Heukamp, F. H., Ulm, F. J., & Germaine, J. T. (2001). Mechanical properties of calcium-leached cement pastes: Triaxial stress states and the influence of the pore pressures. Cement and Concrete Research,
31, 767–774.
Article
Google Scholar
Hinsenveld, M. (1992). A shrinkage core model as a fundamental representation of leaching mechanism in cement stabilized waste. Doctoral thesis, University of Cincinnati, Cincinnati, OH.
Höglund, L.-O. (2001). Project SAFE: Modeling of long-term concrete degradation processes in the Swedish SFR repository vol R-01-08. SKB Report, Svensk Kärnbränslehantering AB.
Lagerblad, B. (2001). Leaching performance of concrete based on studies of sample from old concrete constructions, TR-01-27. Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management.
Langton, C., & Kosson, D. (2009). Review of mechanistic understanding and modeling and uncertainty analysis methods for predicting cementitious barriers performance. doi:10.2172/974326
Mainguy, M., Tognazzi, C., Torrenti, J.-M., & Adenot, F. (2000). Modelling of leaching in pure cement paste and mortar. Cement and Concrete Research,
30, 83–90. doi:10.1016/S0008-8846(99)00208-2.
Article
Google Scholar
Maltais, Y., Samson, E., & Marchand, J. (2004). Predicting the durability of Portland cement systems in aggressive environments—Laboratory validation. Cement and Concrete Research,
34, 1579–1589. doi:10.1016/j.cemconres.2004.03.029.
Article
Google Scholar
Marinoni, N., Pavese, A., Voltolini, M., & Merlini, M. (2008). Long-term leaching test in concretes: An X-ray powder diffraction study. Cement & Concrete Composites,
30, 700–705. doi:10.1016/j.cemconcomp.2008.05.004.
Article
Google Scholar
Morga, M., & Marano, G. C. (2015). Chloride penetration in circular concrete columns. International Journal of Concrete Structures and Materials,
9, 173–183. doi:10.1007/s40069-014-0095-y.
Article
Google Scholar
Nguyen, V. H., Colina, H., Torrenti, J. M., Boulay, C., & Nedjar, B. (2007). Chemo-mechanical coupling behaviour of leached concrete: Part I: Experimental results. Nuclear Engineering and Design,
237, 2083–2089. doi:10.1016/j.nucengdes.2007.02.013.
Article
Google Scholar
NT BUILD 492. (1999). Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments.
Park, S., & Choi, Y. (2012). Influence of curing-form material on the chloride penetration of off-shore concrete. International Journal of Concrete Structures and Materials,
6, 251–256. doi:10.1007/s40069-012-0026-8.
Article
MathSciNet
Google Scholar
Peyronnard, O., Benzaazoua, M., Blanc, D., & Moszkowicz, P. (2009). Study of mineralogy and leaching behavior of stabilized/solidified sludge using differential acid neutralization analysis: Part I: Experimental study. Cement and Concrete Research,
39, 600–609. doi:10.1016/j.cemconres.2009.03.016.
Article
Google Scholar
Pham, S., & Prince, W. (2014). Effects of carbonation on the microstructure of cement materials: influence of measuring methods and of types of cement. International Journal of Concrete Structures and Materials,
8, 327–333. doi:10.1007/s40069-014-0079-y.
Article
Google Scholar
Pritzl, M., Tabatabai, H., & Ghorbanpoor, A. (2014). Laboratory evaluation of select methods of corrosion prevention in reinforced concrete bridges. International Journal of Concrete Structures and Materials,
8, 201–212. doi:10.1007/s40069-014-0074-3.
Article
Google Scholar
Reardon, E. J. (1992). Problems and approaches to the prediction of the chemical composition in cement/water systems. Waste Management,
12, 221–239. doi:10.1016/0956-053x(92)90050-s.
Article
Google Scholar
Revertegat, E., Richet, C., & Gégout, P. (1992). Effect of pH on the durability of cement pastes. Cement and Concrete Research,
22, 259–272. doi:10.1016/0008-8846(92)90064-3.
Article
Google Scholar
Ryu, J.-S., Otsuki, N., & Minagawa, H. (2002). Long-term forecast of Ca leaching from mortar and associated degeneration. Cement and Concrete Research,
32, 1539–1544. doi:10.1016/s0008-8846(02)00830-x.
Article
Google Scholar
Saito, H., & Deguchi, A. (2000). Leaching tests on different mortars using accelerated electrochemical method. Cement and Concrete Research,
30, 1815–1825. doi:10.1016/S0008-8846(00)00377-X.
Article
Google Scholar
Saito, H., Nakane, S., Ikari, S., & Fujiwara, A. (1992). Preliminary experimental study on the deterioration of cementitious materials by an acceleration method. Nuclear Engineering and Design,
138, 151–155. doi:10.1016/0029-5493(92)90290-c.
Article
Google Scholar
Sellier, A., Buffo-Lacarrière, L., Gonnouni, M. E., & Bourbon, X. (2011). Behavior of HPC nuclear waste disposal structures in leaching environment. Nuclear Engineering and Design,
241, 402–414. doi:10.1016/j.nucengdes.2010.11.002.
Article
Google Scholar
Tang, L. (1996). Electrically accelerated methods for determining chloride diffusivity in concrete—Current development. Magazine of Concrete Research,
48, 173–179.
Article
Google Scholar
Trägårdh, J., & Lagerblad, B. (1998). Leaching of 90-year old concrete in contact with stagnant water, TR 98-11. Stockholm, Sweden: Swedish Nuclear fuel and Waste.
Torrent, R. (2007). Non-destructive evaluation of the penetrability and thickness of the concrete cover—State-of-the-Art Report of RILEM Technical Committee 189-NEC vol rep040.
Ulm, F.-J., Lemarchand, E., & Heukamp, F. H. (2003). Elements of chemomechanics of calcium leaching of cement-based materials at different scales. Engineering Fracture Mechanics,
70, 871–889. doi:10.1016/s0013-7944(02)00155-8.
Article
Google Scholar
Wittmann, F. H. (1997). Corrosion of cement-based materials under the influence of an electric field. Materials Science Forum,
247, 107–126. doi:10.4028/www.scientific.net/MSF.247.107.
Article
Google Scholar
Zhang, Q., & Ye, G. (2012). Dehydration kinetics of Portland cement paste at high temperature J Therm Anal Calorim,
110, 153–158. doi:10.1007/s10973-012-2303-9.
Google Scholar