Ali, I., & Kesler, C. E. (1964). *Mechanisms of creep in concrete*. Champaign, IL: University of Illinois.

Google Scholar

Aligizaki, K. K. (2006). *Pore structure of cement-based materials: Testing, interpretation and requirements*. Boca Raton, FL: CRC Press.

Google Scholar

Alizadeh, R., Beaudoin, J. J., & Raki, L. (2010). Viscoelastic nature of calcium silicate hydrate. *Cement & Concrete Composites,*
*32*(5), 369–376.

Article
Google Scholar

Allen, A. J., Thomas, J. J., & Jennings, H. M. (2007). Composition and density of nanoscale calcium–silicate–hydrate in cement. *Nature Materials,*
*6*(4), 311–316.

Article
Google Scholar

Bažant, Z. (1972). Thermodynamics of interacting continua with surfaces and creep analysis of concrete structures. *Nuclear Engineering and Design,*
*20*(2), 477–505.

Article
Google Scholar

Bažant, Z. P. (1983). Mathematical model for creep and thermal shrinkage of concrete at high temperature. *Nuclear Engineering and Design,*
*76*(2), 183–191.

Article
Google Scholar

Bažant, Z. P. (2001). Prediction of concrete creep and shrinkage: Past, present and future. *Nuclear Engineering and Design,*
*203*(1), 27–38.

Article
Google Scholar

Bažant, Z. P., Hauggaard, A. B., Baweja, S., & Ulm, F.-J. (1997). Microprestress-solidification theory for concrete creep. I: Aging and drying effects. *Journal of Engineering Mechanics,*
*123*(11), 1188–1194.

Article
Google Scholar

Beltzung, F., & Wittmann, F. H. (2005). Role of disjoining pressure in cement based materials. *Cement and Concrete Research,*
*35*(12), 2364–2370.

Article
Google Scholar

Bu, Y., Saldana, C., Handwerker, C., & Weiss, J. (2015). *The role of calcium hydroxide in the elastic and viscoelastic response of cementitious materials: A Nanoindentation and SEM-EDS Study* (pp. 25–34). Nanotechnology in Construction: Springer.

Google Scholar

Chae, S. R., Moon, J., Yoon, S., Bae, S., Levitz, P., Winarski, R., et al. (2013). Advanced nanoscale characterization of cement based materials using X-ray synchrotron radiation: A review. *International Journal of Concrete Structures and Materials,*
*7*(2), 95–110.

Article
Google Scholar

Chaube, R., Shimomura, T., & Maekawa, K. (1993). Multi-phase water movement in concrete as a multi-component system. In *RILEM proceedings* (p. 139). Chapman & Hall.

Chen, H., Wyrzykowski, M., Scrivener, K., & Lura, P. (2013). Prediction of self-desiccation in low water-to-cement ratio pastes based on pore structure evolution. *Cement and Concrete Research,*
*49*, 38–47.

Article
Google Scholar

Cohan, L. H. (1938). Sorption hysteresis and the vapor pressure of concave surfaces. *Journal of the American Chemical Society,*
*60*(2), 433–435.

Article
Google Scholar

Feldman, R. F. (1972). Mechanism of creep of hydrated Portland cement paste. *Cement and Concrete Research,*
*2*(5), 521–540.

Article
Google Scholar

Feldman, R. F., & Sereda, P. J. (1968). A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties. *Matériaux et Construction,*
*1*(6), 509–520.

Article
Google Scholar

Glucklich, J., & Ishai, O. (1962). Creep mechanism in cement mortar. *ACI Journal Proceedings, 59*(7), 923–948.

Green, D. J. (1998). *An introduction to the mechanical properties of ceramics*. Cambridge, UK: Cambridge University Press.

Book
Google Scholar

Häkkinen, T. (1986). Properties of alkali-activated slag concrete. Valtion teknillinen tutkimuskeskus, Betoni-ja silikaattitekniikan laboratorio.

Jennings, H. M. (2000). A model for the microstructure of calcium silicate hydrate in cement paste. *Cement and Concrete Research,*
*30*(1), 101–116.

Article
MathSciNet
Google Scholar

Jennings, H. M. (2008). Refinements to colloid model of CSH in cement: CM-II. *Cement and Concrete Research,*
*38*(3), 275–289.

Article
MathSciNet
Google Scholar

Jirásek, M., & Havlásek, P. (2014). Microprestress–solidification theory of concrete creep: Reformulation and improvement. *Cement and Concrete Research,*
*60*, 51–62.

Article
Google Scholar

Jones, C. A., & Grasley, Z. C. (2011). Short-term creep of cement paste during nanoindentation. *Cement & Concrete Composites,*
*33*(1), 12–18.

Article
Google Scholar

Klug, P., & Wittmann, F. (1974). Activation energy and activation volume of creep of hardened cement paste. *Materials Science and Engineering,*
*15*(1), 63–66.

Article
Google Scholar

Kovler, K., & Zhutovsky, S. (2006). Overview and future trends of shrinkage research. *Materials and Structures,*
*39*(9), 827–847.

Article
Google Scholar

Li, V. C. (2012). Tailoring ECC for special attributes: A review. *International Journal of Concrete Structures and Materials,*
*6*(3), 135–144.

Article
MATH
Google Scholar

Li, X., Grasley, Z., Garboczi, E., & Bullard, J. (2015). Modeling the apparent and intrinsic viscoelastic relaxation of hydrating cement paste. *Cement & Concrete Composites,*
*55*, 322–330.

Article
Google Scholar

Li, J., & Yao, Y. (2001). A study on creep and drying shrinkage of high performance concrete. *Cement and Concrete Research,*
*31*(8), 1203–1206.

Article
Google Scholar

Lodeiro, I. G., Fernández-Jimenez, A., Palomo, A., & Macphee, D. (2010). Effect on fresh CSH gels of the simultaneous addition of alkali and aluminium. *Cement and Concrete Research,*
*40*(1), 27–32.

Article
Google Scholar

Lothenbach, B., & Nonat, A. (2015). Calcium silicate hydrates: Solid and liquid phase composition. *Cement and Concrete Research, 78*, 57–70.

Maekawa, K., Ishida, T., & Kishi, T. (2003). Multi-scale modeling of concrete performance. *Journal of Advanced Concrete Technology,*
*1*(2), 91–126.

Article
Google Scholar

Manzano, H., Masoero, E., Lopez-Arbeloa, I., & Jennings, H. M. (2013). Shear deformations in calcium silicate hydrates. *Soft Matter,*
*9*(30), 7333–7341.

Article
Google Scholar

Maruyama, I., Nishioka, Y., Igarashi, G., & Matsui, K. (2014). Microstructural and bulk property changes in hardened cement paste during the first drying process. *Cement and Concrete Research,*
*58*, 20–34.

Article
Google Scholar

Mindess, S., Young, J. F., & Darwin, D. (2003). *Concrete* (2nd ed.). Upper Saddle River: Pearson Education, Inc.

Neville, A. (1981). *Properties of concrete* (3rd ed.). London: Pitman Publishing Ltd.

Nguyen, D.-T., Alizadeh, R., Beaudoin, J. J., Pourbeik, P., & Raki, L. (2014). Microindentation creep of monophasic calcium–silicate–hydrates. *Cement & Concrete Composites,*
*48*, 118–126.

Article
Google Scholar

Nguyen, D.-T., Alizadeh, R., Beaudoin, J., & Raki, L. (2013). Microindentation creep of secondary hydrated cement phases and C–S–H. *Materials and Structures,*
*46*(9), 1519–1525.

Article
Google Scholar

Nonat, A. (2004). The structure and stoichiometry of CSH. *Cement and Concrete Research,*
*34*(9), 1521–1528.

Article
Google Scholar

Pachon-Rodriguez, E. A., Guillon, E., Houvenaghel, G., & Colombani, J. (2014). Wet creep of hardened hydraulic cements—Example of gypsum plaster and implication for hydrated Portland cement. *Cement and Concrete Research,*
*63*, 67–74.

Article
Google Scholar

Papatzani, S., Paine, K., & Calabria-Holley, J. (2015). A comprehensive review of the models on the nanostructure of calcium silicate hydrates. *Construction and Building Materials,*
*74*, 219–234.

Article
Google Scholar

Pellenq, R.-M., Lequeux, N., & Van Damme, H. (2008). Engineering the bonding scheme in C–S–H: The iono-covalent framework. *Cement and Concrete Research,*
*38*(2), 159–174.

Article
Google Scholar

Pickett, G. (1942). The effect of Chang in moisturecontent on the crepe of concrete under a sustained load. *ACI Journal Proceedings, 38*, 333–356.

Powers, T. C. (1958). Structure and physical properties of hardened Portland cement paste. *Journal of the American Ceramic Society,*
*41*(1), 1–6.

Article
Google Scholar

Powers, T. (1968). The thermodynamics of volume change and creep. *Matériaux et Construction,*
*1*(6), 487–507.

Article
Google Scholar

Powers, T. C., & Brownyard, T. L. (1946). Studies of the physical properties of hardened Portland cement paste. *ACI Journal Proceedings, 43*(9), 249–336.

Radlinska, A., Rajabipour, F., Bucher, B., Henkensiefken, R., Sant, G., & Weiss, J. (2008). Shrinkage mitigation strategies in cementitious systems: A closer look at differences in sealed and unsealed behavior. *Transportation Research Record: Journal of the Transportation Research Board.,*
*2070*(1), 59–67.

Article
Google Scholar

Ruetz, W. (1968). A hypothesis for the creep of hardened cement paste and the influence of simultaneous shrinkage. In *Proceedings of the structure of concrete and its behavior under load* (pp. 365–387).

Singh, L. P., Goel, A., Bhattachharyya, S. K., Ahalawat, S., Sharma, U., & Mishra, G. (2015). Effect of morphology and dispersibility of silica nanoparticles on the mechanical behaviour of cement mortar. *International Journal of Concrete Structures and Materials, 9*(2), 1–11.

Singh, B. P., Yazdani, N., & Ramirez, G. (2013). Effect of a time dependent concrete modulus of elasticity on prestress losses in bridge girders. *International Journal of Concrete Structures and Materials,*
*7*(3), 183–191.

Article
Google Scholar

Thomas, J. J., & Jennings, H. M. (2006). A colloidal interpretation of chemical aging of the CSH gel and its effects on the properties of cement paste. *Cement and Concrete Research,*
*36*(1), 30–38.

Article
Google Scholar

Vandamme, M., & Ulm, F.-J. (2009). Nanogranular origin of concrete creep. *Proceedings of the National Academy of Sciences,*
*106*(26), 10552–10557.

Article
Google Scholar

Vichit-Vadakan, W., & Scherer, G. (2001). Beam-bending method for permeability and creep characterization of cement paste and mortar. In *Proceedings of the 6th international conference on creep, shrinkage and durability mechanics of concrete and other quasi*-*brittle materials* (pp. 27–32). Cambridge, MA: Elsevier.

Vlahinić, I., Thomas, J. J., Jennings, H. M., & Andrade, J. E. (2012). Transient creep effects and the lubricating power of water in materials ranging from paper to concrete and Kevlar. *Journal of the Mechanics and Physics of Solids,*
*60*(7), 1350–1362.

Article
MathSciNet
Google Scholar

Wittmann, F. (1973). Interaction of hardened cement paste and water. *Journal of the American Ceramic Society,*
*56*(8), 409–415.

Article
Google Scholar

Wittmann, F. (2008). Heresies on shrinkage and creep mechanisms. In *Proceedings of the 8th international conference on creep, shrinkage and durability mechanics of concrete and concrete structures (CONCREEP 8)* (pp. 3–9).

Wittmann, F., & Roelfstra, P. (1980). Total deformation of loaded drying concrete. *Cement and Concrete Research,*
*10*(5), 601–610.

Article
Google Scholar

Ye, H., Cartwright, C., Rajabipour, F., & Radlińska, A. (2014). Effect of drying rate on shrinkage of alkali-activated slag cements. In *4th international conference on the durability of concrete structure (ICDCS 2014)* (pp. 254–261). Purdue University.

Ye, H., Fu, C., Jin, N., & Jin, X. (2015). Influence of flexural loading on chloride ingress in concrete subjected to cyclic drying-wetting condition. *Computers and Concrete,*
*15*(2), 183–198.

Article
Google Scholar