Ali, I., & Kesler, C. E. (1964). Mechanisms of creep in concrete. Champaign, IL: University of Illinois.
Google Scholar
Aligizaki, K. K. (2006). Pore structure of cement-based materials: Testing, interpretation and requirements. Boca Raton, FL: CRC Press.
Google Scholar
Alizadeh, R., Beaudoin, J. J., & Raki, L. (2010). Viscoelastic nature of calcium silicate hydrate. Cement & Concrete Composites,
32(5), 369–376.
Article
Google Scholar
Allen, A. J., Thomas, J. J., & Jennings, H. M. (2007). Composition and density of nanoscale calcium–silicate–hydrate in cement. Nature Materials,
6(4), 311–316.
Article
Google Scholar
Bažant, Z. (1972). Thermodynamics of interacting continua with surfaces and creep analysis of concrete structures. Nuclear Engineering and Design,
20(2), 477–505.
Article
Google Scholar
Bažant, Z. P. (1983). Mathematical model for creep and thermal shrinkage of concrete at high temperature. Nuclear Engineering and Design,
76(2), 183–191.
Article
Google Scholar
Bažant, Z. P. (2001). Prediction of concrete creep and shrinkage: Past, present and future. Nuclear Engineering and Design,
203(1), 27–38.
Article
Google Scholar
Bažant, Z. P., Hauggaard, A. B., Baweja, S., & Ulm, F.-J. (1997). Microprestress-solidification theory for concrete creep. I: Aging and drying effects. Journal of Engineering Mechanics,
123(11), 1188–1194.
Article
Google Scholar
Beltzung, F., & Wittmann, F. H. (2005). Role of disjoining pressure in cement based materials. Cement and Concrete Research,
35(12), 2364–2370.
Article
Google Scholar
Bu, Y., Saldana, C., Handwerker, C., & Weiss, J. (2015). The role of calcium hydroxide in the elastic and viscoelastic response of cementitious materials: A Nanoindentation and SEM-EDS Study (pp. 25–34). Nanotechnology in Construction: Springer.
Google Scholar
Chae, S. R., Moon, J., Yoon, S., Bae, S., Levitz, P., Winarski, R., et al. (2013). Advanced nanoscale characterization of cement based materials using X-ray synchrotron radiation: A review. International Journal of Concrete Structures and Materials,
7(2), 95–110.
Article
Google Scholar
Chaube, R., Shimomura, T., & Maekawa, K. (1993). Multi-phase water movement in concrete as a multi-component system. In RILEM proceedings (p. 139). Chapman & Hall.
Chen, H., Wyrzykowski, M., Scrivener, K., & Lura, P. (2013). Prediction of self-desiccation in low water-to-cement ratio pastes based on pore structure evolution. Cement and Concrete Research,
49, 38–47.
Article
Google Scholar
Cohan, L. H. (1938). Sorption hysteresis and the vapor pressure of concave surfaces. Journal of the American Chemical Society,
60(2), 433–435.
Article
Google Scholar
Feldman, R. F. (1972). Mechanism of creep of hydrated Portland cement paste. Cement and Concrete Research,
2(5), 521–540.
Article
Google Scholar
Feldman, R. F., & Sereda, P. J. (1968). A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties. Matériaux et Construction,
1(6), 509–520.
Article
Google Scholar
Glucklich, J., & Ishai, O. (1962). Creep mechanism in cement mortar. ACI Journal Proceedings, 59(7), 923–948.
Green, D. J. (1998). An introduction to the mechanical properties of ceramics. Cambridge, UK: Cambridge University Press.
Book
Google Scholar
Häkkinen, T. (1986). Properties of alkali-activated slag concrete. Valtion teknillinen tutkimuskeskus, Betoni-ja silikaattitekniikan laboratorio.
Jennings, H. M. (2000). A model for the microstructure of calcium silicate hydrate in cement paste. Cement and Concrete Research,
30(1), 101–116.
Article
MathSciNet
Google Scholar
Jennings, H. M. (2008). Refinements to colloid model of CSH in cement: CM-II. Cement and Concrete Research,
38(3), 275–289.
Article
MathSciNet
Google Scholar
Jirásek, M., & Havlásek, P. (2014). Microprestress–solidification theory of concrete creep: Reformulation and improvement. Cement and Concrete Research,
60, 51–62.
Article
Google Scholar
Jones, C. A., & Grasley, Z. C. (2011). Short-term creep of cement paste during nanoindentation. Cement & Concrete Composites,
33(1), 12–18.
Article
Google Scholar
Klug, P., & Wittmann, F. (1974). Activation energy and activation volume of creep of hardened cement paste. Materials Science and Engineering,
15(1), 63–66.
Article
Google Scholar
Kovler, K., & Zhutovsky, S. (2006). Overview and future trends of shrinkage research. Materials and Structures,
39(9), 827–847.
Article
Google Scholar
Li, V. C. (2012). Tailoring ECC for special attributes: A review. International Journal of Concrete Structures and Materials,
6(3), 135–144.
Article
MATH
Google Scholar
Li, X., Grasley, Z., Garboczi, E., & Bullard, J. (2015). Modeling the apparent and intrinsic viscoelastic relaxation of hydrating cement paste. Cement & Concrete Composites,
55, 322–330.
Article
Google Scholar
Li, J., & Yao, Y. (2001). A study on creep and drying shrinkage of high performance concrete. Cement and Concrete Research,
31(8), 1203–1206.
Article
Google Scholar
Lodeiro, I. G., Fernández-Jimenez, A., Palomo, A., & Macphee, D. (2010). Effect on fresh CSH gels of the simultaneous addition of alkali and aluminium. Cement and Concrete Research,
40(1), 27–32.
Article
Google Scholar
Lothenbach, B., & Nonat, A. (2015). Calcium silicate hydrates: Solid and liquid phase composition. Cement and Concrete Research, 78, 57–70.
Maekawa, K., Ishida, T., & Kishi, T. (2003). Multi-scale modeling of concrete performance. Journal of Advanced Concrete Technology,
1(2), 91–126.
Article
Google Scholar
Manzano, H., Masoero, E., Lopez-Arbeloa, I., & Jennings, H. M. (2013). Shear deformations in calcium silicate hydrates. Soft Matter,
9(30), 7333–7341.
Article
Google Scholar
Maruyama, I., Nishioka, Y., Igarashi, G., & Matsui, K. (2014). Microstructural and bulk property changes in hardened cement paste during the first drying process. Cement and Concrete Research,
58, 20–34.
Article
Google Scholar
Mindess, S., Young, J. F., & Darwin, D. (2003). Concrete (2nd ed.). Upper Saddle River: Pearson Education, Inc.
Neville, A. (1981). Properties of concrete (3rd ed.). London: Pitman Publishing Ltd.
Nguyen, D.-T., Alizadeh, R., Beaudoin, J. J., Pourbeik, P., & Raki, L. (2014). Microindentation creep of monophasic calcium–silicate–hydrates. Cement & Concrete Composites,
48, 118–126.
Article
Google Scholar
Nguyen, D.-T., Alizadeh, R., Beaudoin, J., & Raki, L. (2013). Microindentation creep of secondary hydrated cement phases and C–S–H. Materials and Structures,
46(9), 1519–1525.
Article
Google Scholar
Nonat, A. (2004). The structure and stoichiometry of CSH. Cement and Concrete Research,
34(9), 1521–1528.
Article
Google Scholar
Pachon-Rodriguez, E. A., Guillon, E., Houvenaghel, G., & Colombani, J. (2014). Wet creep of hardened hydraulic cements—Example of gypsum plaster and implication for hydrated Portland cement. Cement and Concrete Research,
63, 67–74.
Article
Google Scholar
Papatzani, S., Paine, K., & Calabria-Holley, J. (2015). A comprehensive review of the models on the nanostructure of calcium silicate hydrates. Construction and Building Materials,
74, 219–234.
Article
Google Scholar
Pellenq, R.-M., Lequeux, N., & Van Damme, H. (2008). Engineering the bonding scheme in C–S–H: The iono-covalent framework. Cement and Concrete Research,
38(2), 159–174.
Article
Google Scholar
Pickett, G. (1942). The effect of Chang in moisturecontent on the crepe of concrete under a sustained load. ACI Journal Proceedings, 38, 333–356.
Powers, T. C. (1958). Structure and physical properties of hardened Portland cement paste. Journal of the American Ceramic Society,
41(1), 1–6.
Article
Google Scholar
Powers, T. (1968). The thermodynamics of volume change and creep. Matériaux et Construction,
1(6), 487–507.
Article
Google Scholar
Powers, T. C., & Brownyard, T. L. (1946). Studies of the physical properties of hardened Portland cement paste. ACI Journal Proceedings, 43(9), 249–336.
Radlinska, A., Rajabipour, F., Bucher, B., Henkensiefken, R., Sant, G., & Weiss, J. (2008). Shrinkage mitigation strategies in cementitious systems: A closer look at differences in sealed and unsealed behavior. Transportation Research Record: Journal of the Transportation Research Board.,
2070(1), 59–67.
Article
Google Scholar
Ruetz, W. (1968). A hypothesis for the creep of hardened cement paste and the influence of simultaneous shrinkage. In Proceedings of the structure of concrete and its behavior under load (pp. 365–387).
Singh, L. P., Goel, A., Bhattachharyya, S. K., Ahalawat, S., Sharma, U., & Mishra, G. (2015). Effect of morphology and dispersibility of silica nanoparticles on the mechanical behaviour of cement mortar. International Journal of Concrete Structures and Materials, 9(2), 1–11.
Singh, B. P., Yazdani, N., & Ramirez, G. (2013). Effect of a time dependent concrete modulus of elasticity on prestress losses in bridge girders. International Journal of Concrete Structures and Materials,
7(3), 183–191.
Article
Google Scholar
Thomas, J. J., & Jennings, H. M. (2006). A colloidal interpretation of chemical aging of the CSH gel and its effects on the properties of cement paste. Cement and Concrete Research,
36(1), 30–38.
Article
Google Scholar
Vandamme, M., & Ulm, F.-J. (2009). Nanogranular origin of concrete creep. Proceedings of the National Academy of Sciences,
106(26), 10552–10557.
Article
Google Scholar
Vichit-Vadakan, W., & Scherer, G. (2001). Beam-bending method for permeability and creep characterization of cement paste and mortar. In Proceedings of the 6th international conference on creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials (pp. 27–32). Cambridge, MA: Elsevier.
Vlahinić, I., Thomas, J. J., Jennings, H. M., & Andrade, J. E. (2012). Transient creep effects and the lubricating power of water in materials ranging from paper to concrete and Kevlar. Journal of the Mechanics and Physics of Solids,
60(7), 1350–1362.
Article
MathSciNet
Google Scholar
Wittmann, F. (1973). Interaction of hardened cement paste and water. Journal of the American Ceramic Society,
56(8), 409–415.
Article
Google Scholar
Wittmann, F. (2008). Heresies on shrinkage and creep mechanisms. In Proceedings of the 8th international conference on creep, shrinkage and durability mechanics of concrete and concrete structures (CONCREEP 8) (pp. 3–9).
Wittmann, F., & Roelfstra, P. (1980). Total deformation of loaded drying concrete. Cement and Concrete Research,
10(5), 601–610.
Article
Google Scholar
Ye, H., Cartwright, C., Rajabipour, F., & Radlińska, A. (2014). Effect of drying rate on shrinkage of alkali-activated slag cements. In 4th international conference on the durability of concrete structure (ICDCS 2014) (pp. 254–261). Purdue University.
Ye, H., Fu, C., Jin, N., & Jin, X. (2015). Influence of flexural loading on chloride ingress in concrete subjected to cyclic drying-wetting condition. Computers and Concrete,
15(2), 183–198.
Article
Google Scholar