Bažant, Z. P., Kim, J.-K., & Pfeiffer, P. A. (1986). Determination of fracture properties from size effect tests. *Journal of Structural Engineering ASCE,*
*112*(2), 289–307.

Article
Google Scholar

Bažant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. *Materials and Structures,*
*16*(93), 155–177.

Google Scholar

Bueckner, H. F. (1970). A novel principle for the computation of stress intensity factors. *Zeitschrift für Angewandte Mathematik und Mechanik,*
*50*, 529–546.

MathSciNet
MATH
Google Scholar

Carpinteri, A. (1989). Cusp catastrophe interpretation of fracture instability. *Journal of the Mechanics and Physics of Solids,*
*37*(5), 567–582.

Article
MATH
Google Scholar

Choubey, R. K., Kumar, S., & Rao, M. C. (2014). Effect of shear-span/depth ratio on cohesive crack and double-K fracture parameters. *International Journal of Construction,*
*2*(3), 229–247.

Google Scholar

Cusatis, G., & Schauffert, E. A. (2009). Cohesive crack analysis of size effect. *Engineering Fracture Mechanics,*
*76*, 2163–2173.

Article
Google Scholar

Elices, M., Rocco, C., & Roselló, C. (2009). Cohesive crack modeling of a simple concrete: Experimental and numerical results. *Engineering Fracture Mechanics,*
*76*, 1398–1410.

Article
Google Scholar

Glinka, G., & Shen, G. (1991). Universal features of weight functions for cracks in Mode I. *Engineering Fracture Mechanics,*
*40*, 1135–1146.

Article
Google Scholar

Hillerborg, A., Modeer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. *Cement and Concrete Research,*
*6*, 773–782.

Article
Google Scholar

Hu, S., & Lu, J. (2012). Experimental research and analysis on double-K fracture parameters of concrete. *Advanced Science Letters,*
*12*(1), 192–195.

Article
Google Scholar

Hu, S., Mi, Z., & Lu, J. (2012). Effect of crack-depth ratio on double-K fracture parameters of reinforced concrete. *Applied Mechanics and Materials,*
*226–228*, 937–941.

Article
Google Scholar

Ince, R. (2010). Determination of concrete fracture parameters based on two-parameter and size effect models using split-tension cubes. *Engineering Fracture Mechanics,*
*77*, 2233–2250.

Article
Google Scholar

Ince, R. (2012). Determination of the fracture parameters of the Double-K model using weight functions of split-tension specimens. *Engineering Fracture Mechanics,*
*96*, 416–432.

Article
Google Scholar

Isida, M. (1971). Effect of width and length on stress intensity factor of internally cracked plates under various boundary conditions. *International Journal of Fracture,*
*7*, 301–316.

Google Scholar

Jenq, Y. S., & Shah, S. P. (1985). Two parameter fracture model for concrete. *Journal of Engineering Mechanics,*
*111*(10), 1227–1241.

Article
Google Scholar

Karihaloo, B. L., & Nallathambi, P. (1991). Notched beam test: Mode I fracture toughness. In S. P. Shah & A. Carpinteri (Eds.), *Fracture mechanics test methods for concrete, report of RILEM Technical Committee 89-FMT* (pp. 1–86). London, UK: Chamman & Hall.

Google Scholar

Kumar, S. (2010). Behavoiur of fracture parameters for crack propagation in concrete. Ph.D. Thesis submitted to Indian Institute of Technology, Kharagpur, India.

Kumar, S., & Barai, S. V. (2008a). Influence of specimen geometry on determination of double-K fracture parameters of concrete: A comparative study. *International Journal of Fracture,*
*149*, 47–66.

Article
MATH
Google Scholar

Kumar, S., & Barai, S. V. (2008b). Cohesive crack model for the study of nonlinear fracture behaviour of concrete. *Journal of the Institution of Engineers (India),*
*89*, 7–15.

Google Scholar

Kumar, S., & Barai, S. V. (2009a). Determining double-K fracture parameters of concrete for compact tension and wedge splitting tests using weight function. *Engineering Fracture Mechanics,*
*76*, 935–948.

Article
Google Scholar

Kumar, S., & Barai, S. V. (2009b). Effect of softening function on the cohesive crack fracture parameters of concrete CT specimen. *Sadhana-Academy Proceedings in Engineering Sciences,*
*36*(6), 987–1015.

Google Scholar

Kumar, S., & Barai, S. V. (2010). Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function. *Fatigue & Fracture of Engineering Materials & Structures,*
*33*(10), 645–660.

Article
Google Scholar

Kumar, S., & Pandey, S. R. (2012). Determination of double-K fracture parameters of concrete using split-tension cube test. *Computers and Concrete,*
*9*(1), 1–19.

Article
MathSciNet
Google Scholar

Kumar, S., Pandey, S. R., & Srivastava, A. K. L. (2013). Analytical methods for determination of double-K fracture parameters of concrete. *Advances in Concrete Construction,*
*1*(4), 319–340.

Article
Google Scholar

Kumar, S., Pandey, S. R., & Srivastava, A. K. L. (2014). Determination of double-K fracture parameters of concrete using peak load method. *Engineering Fracture Mechanics,*
*131*, 471–484.

Article
Google Scholar

Kwon, S. H., Zhao, Z., & Shah, S. P. (2008). Effect of specimen size on fracture energy and softening curve of concrete: Part II. Inverse analysis and softening curve. *Cement Concrete Res,*
*38*, 1061–1069.

Article
Google Scholar

Lee, J., & Lopez, M. M. (2014). An experimental study on fracture energy of plain concrete. *International Journal of Concrete Structures and Materials,*
*8*(2), 129–139.

Article
Google Scholar

Modeer, M. (1979). A fracture mechanics approach to failure analyses of concrete materials. Report TVBM-1001, Division of Building Materials. University of Lund, Sweden.

Murthy, A. R., Iyer, N. R., & Prasad, B. K. R. (2012). Evaluation of fracture parameters by Double-G, Double-K models and crack extension resistance for high strength and ultra high strength concrete beams. *Computers Materials & Continua,*
*31*(3), 229–252.

Google Scholar

Nallathambi, P., & Karihaloo, B. L. (1986). Determination of specimen-size independent fracture toughness of plain concrete. *Magazine of Concrete Research,*
*135*, 67–76.

Article
Google Scholar

Park, K., Paulino, G. H., & Roesler, J. R. (2008). Determination of the kink point in the bilinear softening model for concrete. *Engineering Fracture Mechanics,*
*7*, 3806–3818.

Article
Google Scholar

Petersson, P. E. (1981). Crack growth and development of fracture zone in plain concrete and similar materials. Report No. TVBM-100, Lund Institute of Technology, Sweden.

Planas, J., & Elices, M. (1991). Nonlinear fracture of cohesive material. *International Journal of Fracture,*
*51*, 139–157.

Google Scholar

Reinhardt, H. W., Cornelissen, H. A. W., & Hordijk, D. A. (1986). Tensile tests and failure analysis of concrete. *Journal of Structural Engineering,*
*112*(11), 2462–2477.

Article
Google Scholar

Rice, J. R. (1972). Some remarks on elastic crack-tip stress fields. *International Journal of Solids and Structures,*
*8*, 751–758.

Article
MATH
Google Scholar

RILEM Draft Recommendation (TC50-FMC). (1985). Determination of fracture energy of mortar and concrete by means of three-point bend test on notched beams. *Materials and Structures,*
*18*(4), 287–290.

Article
Google Scholar

Roesler, J., Paulino, G. H., Park, K., & Gaedicke, C. (2007). Concrete fracture prediction using bilinear softening. *Cement Concrete Composites,*
*29*, 300–312.

Article
Google Scholar

Tada, H., Paris, P. C., & Irwin, G. R. (2000). *Stress analysis of cracks handbook* (3rd ed.). New York, NY: ASME Press.

Book
Google Scholar

Timoshenko, S. P., & Goodier, J. N. (1970). *Theory of elasticity* (3rd ed.). New York, NY: McGraw Hill.

MATH
Google Scholar

Wu, Z., Jakubczak, H., Glinka, G., Molski, K., & Nilsson, L. (2003). Determination of stress intensity factors for cracks in complex stress fields. *Archive of Mechanical Engineering,*
*50*(1), s41–s67.

Google Scholar

Xu, S., & Reinhardt, H. W. (1998). Crack extension resistance and fracture properties of quasi-brittle materials like concrete based on the complete process of fracture. *International Journal of Fracture,*
*92*, 71–99.

Article
Google Scholar

Xu, S., & Reinhardt, H. W. (1999a). Determination of double-K criterion for crack propagation in quasi-brittle materials, Part I: Experimental investigation of crack propagation. *International Journal of Fracture,*
*98*, 111–149.

Article
Google Scholar

Xu, S., & Reinhardt, H. W. (1999b). Determination of double-K criterion for crack propagation in quasi-brittle materials, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams. *International Journal of Fracture,*
*98*, 151–177.

Article
Google Scholar

Xu, S., & Reinhardt, H. W. (1999c). Determination of double-K criterion for crack propagation in quasi-brittle materials, Part III: Compact tension specimens and wedge splitting specimens. *International Journal of Fracture,*
*98*, 179–193.

Article
Google Scholar

Xu, S., & Reinhardt, H. W. (2000). A simplified method for determining double-K fracture meter parameters for three-point bending tests. *International Journal of Fracture,*
*104*, 181–209.

Article
Google Scholar

Xu, S., & Zhang, X. (2008). Determination of fracture parameters for crack propagation in concrete using an energy approach. *Engineering Fracture Mechanics,*
*75*, 4292–4308.

Article
Google Scholar

Xu, S., & Zhu, Y. (2009). Experimental determination of fracture parameters for crack propagation in hardening cement paste and mortar. *International Journal of Fracture,*
*157*, 33–43.

Article
MathSciNet
MATH
Google Scholar

Zhang, X., & Xu, S. (2011). A comparative study on five approaches to evaluate double-K fracture toughness parameters of concrete and size effect analysis. *Engineering Fracture Mechanics,*
*78*, 2115–2138.

Article
Google Scholar

Zhang, X., Xu, S., & Zheng, S. (2007). Experimental measurement of double-K fracture parameters of concrete with small-size aggregates. *Frontiers of Architecture and Civil Engineering in China,*
*1*(4), 448–457.

Article
Google Scholar

Zhao, Z., Kwon, S. H., & Shah, S. P. (2008). Effect of specimen size on fracture energy and softening curve of concrete: Part I. Experiments and fracture energy. *Cement Concrete Res,*
*38*, 1049–1060.

Article
Google Scholar

Zhao, Y., & Xu, S. (2002). The influence of span/depth ratio on the double-K fracture parameters of concrete. *Journal of China Three Gorges University (Natural Sciences),*
*24*(1), 35–41.

Google Scholar

Zi, G., & Bažant, Z. P. (2003). Eignvalue method for computing size effect of cohesive cracks with residual stress, with application to kink-bands in composites. *International Journal of Engineering Science,*
*41*, 1519–1534.

Article
Google Scholar