Bažant, Z. P., Kim, J.-K., & Pfeiffer, P. A. (1986). Determination of fracture properties from size effect tests. Journal of Structural Engineering ASCE,
112(2), 289–307.
Article
Google Scholar
Bažant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. Materials and Structures,
16(93), 155–177.
Google Scholar
Bueckner, H. F. (1970). A novel principle for the computation of stress intensity factors. Zeitschrift für Angewandte Mathematik und Mechanik,
50, 529–546.
MathSciNet
MATH
Google Scholar
Carpinteri, A. (1989). Cusp catastrophe interpretation of fracture instability. Journal of the Mechanics and Physics of Solids,
37(5), 567–582.
Article
MATH
Google Scholar
Choubey, R. K., Kumar, S., & Rao, M. C. (2014). Effect of shear-span/depth ratio on cohesive crack and double-K fracture parameters. International Journal of Construction,
2(3), 229–247.
Google Scholar
Cusatis, G., & Schauffert, E. A. (2009). Cohesive crack analysis of size effect. Engineering Fracture Mechanics,
76, 2163–2173.
Article
Google Scholar
Elices, M., Rocco, C., & Roselló, C. (2009). Cohesive crack modeling of a simple concrete: Experimental and numerical results. Engineering Fracture Mechanics,
76, 1398–1410.
Article
Google Scholar
Glinka, G., & Shen, G. (1991). Universal features of weight functions for cracks in Mode I. Engineering Fracture Mechanics,
40, 1135–1146.
Article
Google Scholar
Hillerborg, A., Modeer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research,
6, 773–782.
Article
Google Scholar
Hu, S., & Lu, J. (2012). Experimental research and analysis on double-K fracture parameters of concrete. Advanced Science Letters,
12(1), 192–195.
Article
Google Scholar
Hu, S., Mi, Z., & Lu, J. (2012). Effect of crack-depth ratio on double-K fracture parameters of reinforced concrete. Applied Mechanics and Materials,
226–228, 937–941.
Article
Google Scholar
Ince, R. (2010). Determination of concrete fracture parameters based on two-parameter and size effect models using split-tension cubes. Engineering Fracture Mechanics,
77, 2233–2250.
Article
Google Scholar
Ince, R. (2012). Determination of the fracture parameters of the Double-K model using weight functions of split-tension specimens. Engineering Fracture Mechanics,
96, 416–432.
Article
Google Scholar
Isida, M. (1971). Effect of width and length on stress intensity factor of internally cracked plates under various boundary conditions. International Journal of Fracture,
7, 301–316.
Google Scholar
Jenq, Y. S., & Shah, S. P. (1985). Two parameter fracture model for concrete. Journal of Engineering Mechanics,
111(10), 1227–1241.
Article
Google Scholar
Karihaloo, B. L., & Nallathambi, P. (1991). Notched beam test: Mode I fracture toughness. In S. P. Shah & A. Carpinteri (Eds.), Fracture mechanics test methods for concrete, report of RILEM Technical Committee 89-FMT (pp. 1–86). London, UK: Chamman & Hall.
Google Scholar
Kumar, S. (2010). Behavoiur of fracture parameters for crack propagation in concrete. Ph.D. Thesis submitted to Indian Institute of Technology, Kharagpur, India.
Kumar, S., & Barai, S. V. (2008a). Influence of specimen geometry on determination of double-K fracture parameters of concrete: A comparative study. International Journal of Fracture,
149, 47–66.
Article
MATH
Google Scholar
Kumar, S., & Barai, S. V. (2008b). Cohesive crack model for the study of nonlinear fracture behaviour of concrete. Journal of the Institution of Engineers (India),
89, 7–15.
Google Scholar
Kumar, S., & Barai, S. V. (2009a). Determining double-K fracture parameters of concrete for compact tension and wedge splitting tests using weight function. Engineering Fracture Mechanics,
76, 935–948.
Article
Google Scholar
Kumar, S., & Barai, S. V. (2009b). Effect of softening function on the cohesive crack fracture parameters of concrete CT specimen. Sadhana-Academy Proceedings in Engineering Sciences,
36(6), 987–1015.
Google Scholar
Kumar, S., & Barai, S. V. (2010). Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function. Fatigue & Fracture of Engineering Materials & Structures,
33(10), 645–660.
Article
Google Scholar
Kumar, S., & Pandey, S. R. (2012). Determination of double-K fracture parameters of concrete using split-tension cube test. Computers and Concrete,
9(1), 1–19.
Article
MathSciNet
Google Scholar
Kumar, S., Pandey, S. R., & Srivastava, A. K. L. (2013). Analytical methods for determination of double-K fracture parameters of concrete. Advances in Concrete Construction,
1(4), 319–340.
Article
Google Scholar
Kumar, S., Pandey, S. R., & Srivastava, A. K. L. (2014). Determination of double-K fracture parameters of concrete using peak load method. Engineering Fracture Mechanics,
131, 471–484.
Article
Google Scholar
Kwon, S. H., Zhao, Z., & Shah, S. P. (2008). Effect of specimen size on fracture energy and softening curve of concrete: Part II. Inverse analysis and softening curve. Cement Concrete Res,
38, 1061–1069.
Article
Google Scholar
Lee, J., & Lopez, M. M. (2014). An experimental study on fracture energy of plain concrete. International Journal of Concrete Structures and Materials,
8(2), 129–139.
Article
Google Scholar
Modeer, M. (1979). A fracture mechanics approach to failure analyses of concrete materials. Report TVBM-1001, Division of Building Materials. University of Lund, Sweden.
Murthy, A. R., Iyer, N. R., & Prasad, B. K. R. (2012). Evaluation of fracture parameters by Double-G, Double-K models and crack extension resistance for high strength and ultra high strength concrete beams. Computers Materials & Continua,
31(3), 229–252.
Google Scholar
Nallathambi, P., & Karihaloo, B. L. (1986). Determination of specimen-size independent fracture toughness of plain concrete. Magazine of Concrete Research,
135, 67–76.
Article
Google Scholar
Park, K., Paulino, G. H., & Roesler, J. R. (2008). Determination of the kink point in the bilinear softening model for concrete. Engineering Fracture Mechanics,
7, 3806–3818.
Article
Google Scholar
Petersson, P. E. (1981). Crack growth and development of fracture zone in plain concrete and similar materials. Report No. TVBM-100, Lund Institute of Technology, Sweden.
Planas, J., & Elices, M. (1991). Nonlinear fracture of cohesive material. International Journal of Fracture,
51, 139–157.
Google Scholar
Reinhardt, H. W., Cornelissen, H. A. W., & Hordijk, D. A. (1986). Tensile tests and failure analysis of concrete. Journal of Structural Engineering,
112(11), 2462–2477.
Article
Google Scholar
Rice, J. R. (1972). Some remarks on elastic crack-tip stress fields. International Journal of Solids and Structures,
8, 751–758.
Article
MATH
Google Scholar
RILEM Draft Recommendation (TC50-FMC). (1985). Determination of fracture energy of mortar and concrete by means of three-point bend test on notched beams. Materials and Structures,
18(4), 287–290.
Article
Google Scholar
Roesler, J., Paulino, G. H., Park, K., & Gaedicke, C. (2007). Concrete fracture prediction using bilinear softening. Cement Concrete Composites,
29, 300–312.
Article
Google Scholar
Tada, H., Paris, P. C., & Irwin, G. R. (2000). Stress analysis of cracks handbook (3rd ed.). New York, NY: ASME Press.
Book
Google Scholar
Timoshenko, S. P., & Goodier, J. N. (1970). Theory of elasticity (3rd ed.). New York, NY: McGraw Hill.
MATH
Google Scholar
Wu, Z., Jakubczak, H., Glinka, G., Molski, K., & Nilsson, L. (2003). Determination of stress intensity factors for cracks in complex stress fields. Archive of Mechanical Engineering,
50(1), s41–s67.
Google Scholar
Xu, S., & Reinhardt, H. W. (1998). Crack extension resistance and fracture properties of quasi-brittle materials like concrete based on the complete process of fracture. International Journal of Fracture,
92, 71–99.
Article
Google Scholar
Xu, S., & Reinhardt, H. W. (1999a). Determination of double-K criterion for crack propagation in quasi-brittle materials, Part I: Experimental investigation of crack propagation. International Journal of Fracture,
98, 111–149.
Article
Google Scholar
Xu, S., & Reinhardt, H. W. (1999b). Determination of double-K criterion for crack propagation in quasi-brittle materials, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams. International Journal of Fracture,
98, 151–177.
Article
Google Scholar
Xu, S., & Reinhardt, H. W. (1999c). Determination of double-K criterion for crack propagation in quasi-brittle materials, Part III: Compact tension specimens and wedge splitting specimens. International Journal of Fracture,
98, 179–193.
Article
Google Scholar
Xu, S., & Reinhardt, H. W. (2000). A simplified method for determining double-K fracture meter parameters for three-point bending tests. International Journal of Fracture,
104, 181–209.
Article
Google Scholar
Xu, S., & Zhang, X. (2008). Determination of fracture parameters for crack propagation in concrete using an energy approach. Engineering Fracture Mechanics,
75, 4292–4308.
Article
Google Scholar
Xu, S., & Zhu, Y. (2009). Experimental determination of fracture parameters for crack propagation in hardening cement paste and mortar. International Journal of Fracture,
157, 33–43.
Article
MathSciNet
MATH
Google Scholar
Zhang, X., & Xu, S. (2011). A comparative study on five approaches to evaluate double-K fracture toughness parameters of concrete and size effect analysis. Engineering Fracture Mechanics,
78, 2115–2138.
Article
Google Scholar
Zhang, X., Xu, S., & Zheng, S. (2007). Experimental measurement of double-K fracture parameters of concrete with small-size aggregates. Frontiers of Architecture and Civil Engineering in China,
1(4), 448–457.
Article
Google Scholar
Zhao, Z., Kwon, S. H., & Shah, S. P. (2008). Effect of specimen size on fracture energy and softening curve of concrete: Part I. Experiments and fracture energy. Cement Concrete Res,
38, 1049–1060.
Article
Google Scholar
Zhao, Y., & Xu, S. (2002). The influence of span/depth ratio on the double-K fracture parameters of concrete. Journal of China Three Gorges University (Natural Sciences),
24(1), 35–41.
Google Scholar
Zi, G., & Bažant, Z. P. (2003). Eignvalue method for computing size effect of cohesive cracks with residual stress, with application to kink-bands in composites. International Journal of Engineering Science,
41, 1519–1534.
Article
Google Scholar