Ahuja, S. K. (1980). Effect of carbon black on the rheological properties of styrene n-butyl methacrylate copolymer melt. In G. Astarita, G. Marrucci, & L. Nicolais (Eds.), *Rheology* (2nd ed., pp. 469–476). New York, NY: Springer.

Chapter
Google Scholar

Aleekseev, S. N. (1952). On the calculation of resistance in the pipes of concrete pumps. *MekhanizatsiyaStroitel’stva,*
*9*(1), 8–13.

Google Scholar

Asakura, S., & Oosawa, F. (1958). Interaction between particles suspended in solutions of macromolecules. *Journal of Polymer Science,*
*33*, 183–192.

Article
Google Scholar

Atzeni, C., Massidda, L., & Sanna, U. (1985). Comparision between rheological models for portland cement pastes. *Cement and Concrete Research,*
*15*, 511–519.

Article
Google Scholar

Banfill, P. F. G., Kitching, D. R. (1990) Use of a Controlled Stress Rheometer to Study the Yield Stress of Oilwell Cement Slurries. In International Conference on Rheology of Fresh Cement and Concrete, University of Liverpool, March 27–29.

Browne, R., & Bamforth, P. (1977). Tests to establish concrete pumpability. *Proceedings ACI Journal,*
*74*(5), 193–203.

Google Scholar

Choi, M. S., Kim, Y. J., & Kwon, S. H. (2013a). Prediction on pipe flow of pumped concrete based on shear-induced particle migration. *Cement and Concrete Research,*
*52*(10), 216–224.

Article
Google Scholar

Choi, M. S., Roussel, N., Kim, Y. J., & Kim, J. K. (2013b). Lubrication layer properties during concrete pumping. *Cement and Concrete Research,*
*45*(3), 69–78.

Article
Google Scholar

Chow, T. W., McIntire, L. V., Kunze, K. R., & Cooke, C. E. (1988). The rheological properties of cement slurries: Effects of vibration, hydration conditions, and additives. *SPE Production Engineering,*
*3*, 543–550.

Article
Google Scholar

Cooke, C. E., Gonzalez, O. J., & Broussard, D. J. (1988). Primary cementing improvement by casing vibration during cement curing time. *SPE Production Engineering,*
*3*, 339–345.

Article
Google Scholar

Davis, S. S. (1971a). Viscoelastic properties of pharmaceutical semisolids III: Nondestructive oscillatory testing. *Journal of Pharmaceutical Sciences,*
*60*, 1351–1355.

Article
Google Scholar

Davis, S. S. (1971b). Viscoelastic properties of pharmaceutical semisolids IV: Destructive oscillatory testing. *Journal of Pharmaceutical Sciences,*
*60*, 1356–1365.

Article
Google Scholar

Ferry, J. D. (1970). *Viscoelastic properties of polymers* (2nd ed.). New York: Wiley.

Google Scholar

Feys, R., & Schutter, G. D. (2005). *Pipe flow velocity profiles of complex suspensions, like concrete*. Gent, Belgium: Gent University.

Google Scholar

Figura, B. D., & Prud’homme, R. K. (2010). Hydrating cement pastes: Novel rheological measurement techniques of the acceleration of gelation. *Journal of Rheology,*
*54*, 1363–1378.

Article
Google Scholar

Franck, A. J. P. (1988). Rheological characterization of suspensions-comparison of steady and dynamic techniques. *Uhlherr,*
*2*, 327–329.

Google Scholar

Gandhi, K., & Salovey, R. (1988). Dynamic mechanical behavior of polymers containing carbon black. *Polymer Engineering & Science,*
*28*, 877–887.

Article
Google Scholar

Grzeszczyk, S., & Kucharska, L. (1988). The influence of alkalis on rheological properties of fresh cement pastes. *Cement and Concrete Research,*
*18*, 1–8.

Article
Google Scholar

Heath, D., & Tadros, T. F. (1983). Rheological investigations of the effect of addition of free polymer to concentrated sterically stabilised polystyrene latex dispersions. *Faraday Discussions of the Chemical Society,*
*76*, 203–218.

Article
Google Scholar

Ingber, M. S., Graham, A. L., Mondy, L. A., & Fang, Z. (2009). An improved constitutive model for concentrated suspensions accounting for shear-induced particle migration rate dependence on particle radius. *Int. J. Multiphase Flow,*
*35*, 270–276.

Article
Google Scholar

Jacobsen, S., Haugan, L., Hammer, T. A., & Kalogiannidis, E. (2009). Flow conditions of fresh mortar and concrete in different pipes. *Cement and Concrete Research,*
*39*(1), 997–1006.

Article
Google Scholar

Kaplan, D., Larrard, F. D., & Sedran, T. (2005). Design of concrete pumping circuit. *ACI Materials Journal,*
*102*(2), 110–117.

Google Scholar

Keating, J., Hannant, D.J. (1990) The use of shear vane to measure the gel strength and dynamic yield strength of oil well cement slurries at high temperature and pressure. International Conference on Rheology of Fresh Cement and Concrete, University of Liverpool, March 27–29.

Lobe, V. M., & White, J. L. (1979). An experimental study of the influence of carbon black on the rheological properties of a polystyrene melt. *Polymer Engineering & Science,*
*19*, 617–624.

Article
Google Scholar

Lu, G., Wang, K., & Rudolphi, T. J. (2008). Modeling rheological behavior of highly flowable mortar using concepts of particle and fluid mechanics. *Cement and Concrete Composite,*
*30*, 1–12.

Article
Google Scholar

Marin, G. (1988). Oscillatory rheometry. In A. A. Collyer & D. W. Clegg (Eds.), *Rheological Measurement* (pp. 297–343). London, UK: Elsevier.

Google Scholar

Morinaga, S. (1973). Pumpability of concrete and pumping pressure in pipe line. *Proceeding of a RILEM Seminar Held in Leeds,*
*3*, 1–39.

Google Scholar

Nguyen, Q. D., & Boger, D. V. (1992). Measuring the flow properties of yield stress fluids. *Annual Review of Fluid Mechanics,*
*24*, 47–88.

Article
MATH
Google Scholar

Onogi, S., Matsumoto, T., & Warashina, Y. (1973). Rheological properties of dispersions of spherical particles in polymer solutions. *Transactions. Society of Rheology,*
*17*, 175–190.

Article
Google Scholar

Papo, A. (1988). The thixotropic behavior of white portland cement pastes. *Cement and Concrete Research,*
*18*, 595–603.

Article
Google Scholar

Phillips, R. J., Armstrong, R. C., & Brown, R. A. (1992). A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. *Physics of Fluids,*
*4*, 30–40.

Article
MATH
Google Scholar

Rossig, M., & Frischbeton, F. V. (1974). *Insbesondere von Leichtbeton, durch Rohrleitungen, 132, Dr.diss, RWTH*. Opladen: Westdeutscher Verlag.

Book
Google Scholar

Saaka, A. W., Jenningsa, H. M., & Shah, S. P. (2001). The influence of wall slip on yield stress and viscoelastic measurements of cement paste. *Cement and Concrete Research,*
*31*, 205–212.

Article
Google Scholar

Sakuta, M., Yamane, S., Kasami, H., & Sakamoto, A. (1979). Pumpability and rheological properties of fresh concrete. *Proceeding of Conference on Quality Control of Concrete Structures,*
*2*, 125–132.

Google Scholar

Schultz, M. A., & Struble, L. J. (1993). Use of oscillatory shear to study flow behavior of fresh cement paste. *Cement and Concrete Research,*
*23*, 273–282.

Article
Google Scholar

Tattersall, G. H., & Banfill, E. E. G. (1983). *The rheology of fresh concrete*. London, UK: Pitman.

Google Scholar

Vassiliev, V. (1953). Flow regime in a concrete pipe. *Edition,*
*7*, 42–44.

Google Scholar

Weber, R. (1968). *The transport of concrete by pipeline*. London, UK: Cement and Concrete Association.

Google Scholar

Xuequan, W., & Roy, D. M. (1984). Slag cement utilization: Rheological properties and related characterization. *Cement and Concrete Research,*
*14*, 521–528.

Article
Google Scholar

Yang, M. C., Scriven, L. E., & Macosko, C. W. (1986). Some rheological measurements on magnetic iron oxide suspensions in silicon oil. *Journal of Rheology,*
*30*, 1015–1029.

Article
Google Scholar