Abd El Fattah, A. M. (2012). Behavior of concrete columns under various confinement effects. Ph.D. Dissertation, Kansas State University.
Abd El Fattah, A. M., Rasheed, H. A., & Esmaeily, A. (2011). A new eccentricity-based simulation to generate ultimate confined interaction diagrams for circular concrete columns. Journal of the Franklin Institute—Engineering and Applied Mathematics,
348(7), 1163–1176.
Article
MATH
Google Scholar
Attard, M. M., & Setunge, S. (1996). Stress–strain relationship of confined and unconfined concrete. ACI Materials Journal,
93(5), 432–442.
Google Scholar
Binici, B. (2005). An analytical model for stress–strain behavior of confined concrete. Engineering Structures,
27(7), 1040–1051.
Article
Google Scholar
Bonet, J. L., Barros, F. M., & Romero, M. L. (2006). Comparative study of analytical and numerical algorithms for designing reinforced concrete section under biaxial bending. Computers & Structures,
84(31–32), 2184–2193.
Article
Google Scholar
Braga, F., Gigliotti, R., & Laterza, M. (2006). Analytical stress-strain relationship for concrete confined by steel stirrups and/or FRP jackets. Journal of Structural Engineering, 132(9), 1402–1416.
Campione, G., & Minafo, G. (2010). Compressive behavior of short high-strength concrete columns. Engineering Structures,
32(9), 2755–2766.
Article
Google Scholar
Cedolin, L., Cusatis, G., Eccheli, S., & Roveda, M. (2008). Capacity of rectangular cross sections under biaxially eccentric loads. ACI Structural Journal,
105(2), 215–224.
Google Scholar
Cusson, D., & Paultre, P. (1995). Stress–strain model for confined high-strength concrete. ASCE Journal of Structural Engineering,
121(3), 468–477.
Article
Google Scholar
Elwi, A., & Murray, D. W. (1979). A 3D hypoelastic concrete constitutive relationship. Journal of Engineering Mechanics,
105, 623–641.
Google Scholar
Fafitis, A., & Shah, S. P. (1985). Lateral reinforcement for high-strength concrete columns. ACI Special Publication, SP 87-12, pp. 213-232. Detroit, MI: American Concrete Institute.
Fujii, M., Kobayashi, K., Miyagawa, T., Inoue, S., & Matsumoto, T. (1988). A study on the application of a stress–strain relation of confined concrete. In Proceedings of JCA cement and concrete (Vol. 42). Tokyo, Japan: Japan Cement Association.
Hoshikuma, J., Kawashima, K., Nagaya, K., & Taylor, A. W. (1997). Stress–strain model for confined reinforced concrete in bridge piers. Journal of Structural Engineering,
123(5), 624–633.
Article
Google Scholar
Hsu, L. S., & Hsu, C. T. T. (1994). Complete stress–strain behavior of high-strength concrete under compression. Magazine of Concrete Research,
46(169), 301–312.
Article
Google Scholar
Kaba, S. A., & Mahin, S. A. (1984). Refined modeling of reinforced concrete columns for seismic analysis. Report No. UBC/EERC-84/3. Berkeley, CA: University of California, Berkeley.
Lejano, B. A. (2007). Investigation of biaxial bending of reinforced concrete columns through fiber method modeling. Journal of Research in Science, Computing, and Engineering,
4(3), 61–73.
Google Scholar
Mander, J. B. (1983). Seismic design of bridge piers. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand.
Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical stress–strain model for confined concrete. Journal of Structural Engineering, ASCE,
114(8), 1827–1849.
Article
Google Scholar
Park, R., Priestley, M. J. N., & Gill, W. D. (1982). Ductility of square confined concrete columns. Journal of Structural Division, ASCE,
108(ST4), 929–950.
Google Scholar
Paultre, P., & Légeron, F. (2008). Confinement reinforcement design for reinforced concrete columns. Journal of Structural Engineering, ASCE,
134(5), 738–749.
Article
Google Scholar
Rasheed, H. A., & Dinno, K. S. (1994). An efficient nonlinear analysis of RC sections. Computers & Structures,
53(3), 613–623.
Article
Google Scholar
Razvi, S., & Saatcioglu, M. (1999). Confinement model for high-strength concrete. Journal of Structural Engineering,
125(3), 281–289.
Article
Google Scholar
Richart. F. E., Brandtzaeg, A., & Brown, R. L. (1929). The failure of plain and spirally reinforced concrete in compression. Bulletin No. 190, Engineering Station. Urbana, IL: University of Illinois.
Saatcioglu, M., & Razvi, S. R. (1992). Strength and ductility of confined concrete. Journal of Structural Engineering,
118(6), 1590–1607.
Article
Google Scholar
Saatcioglu, M., Salamt, A. H., & Razvi, S. R. (1995). Confined columns under eccentric loading. Journal of Structural Engineering,
121(11), 1547–1556.
Article
Google Scholar
Samani, A. K., & Attard, M. (2012). A stress–strain model for uniaxial and confined concrete under compression. Engineering Structures,
41, 335–349.
Article
Google Scholar
Schickert, G., & Winkler, H. (1977). Results of tests concerning strength and strain of concrete subjected to multiaxial compressive stresses (p. 277). No: Deutscher Ausschuss for Stahlbeton (Berlin).
Google Scholar
Scott, B. D., Park, R., & Priestley, N. (1982). Stress–strain behavior of concrete confined by overlapping hoops at law and high strain rates. ACI Journal,
79(1), 13–27.
Google Scholar
Sheikh, S. A., & Uzumeri, S. M. (1982). Analytical model for concrete confinement in tied columns. Journal of Structural Engineering, ASCE,
108(ST12), 2703–2722.
Google Scholar
Wee, T. H., Chin, M. S., & Mansur, M. A. (1996). Stress–strain relationship of high strength concrete in compression. Journal of Materials in Civil Engineering,
8(2), 70–76.
Article
Google Scholar
Willam, K. J., & Warnke, E. P. (1975). Constitutive model for the triaxial behavior of concrete. The International Association for Bridge and Structural Engineering,
19, 1–31.
Google Scholar
Yoo, S. H., & Shin, S. W. (2007). Variation of ultimate concrete strain at RC columns subjected to axial loads with bi-directional eccentricities. Key Engineering Materials,
348–349, 617–620.
Article
Google Scholar
Zahn, F., Park, R., & Priestley, M. J. N. (1989). Strength and ductility of square reinforced concrete column sections subjected to biaxial bending. ACI Structural Journal,
86(2), 123–131.
Google Scholar