ACI 211.1-91. (1991). *Standard practice for selecting proportions for normal, heavyweight and mass concrete *(reapproved 2009). Farmington Hills, MI: American Concrete Institute.

Google Scholar

ACI 318-14. (2014). *Building code requirements for structural concrete (ACI 318-14) and commentary*. Farmington Hills, MI: American Concrete Institute.

Google Scholar

ACI 440.2R. (2008). *Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures*. Farmington Hills, MI: American Concrete Institute.

Google Scholar

Al Abadi, H., Abo El-Naga, H., Shaia, H., & Paton-Cole, V. (2016). Refined approach for modelling strength enhancement of FRP-confined concrete. *Construction and Building Materials,*
*119*(30), 152–174.

Article
Google Scholar

Al-Kamaki, Y., Al-Mahaidi, R., & Bennets, I. D. (2015). Experimental and numerical study of the behaviour of heat-damaged RC circular columns confined with CFRP fabric. *Composite Structures,*
*133*, 679–690.

Article
Google Scholar

Al-Nimry, H., Haddad, R., Afram, S., & Abdel-Halim, M. (2013). Effectiveness of advanced composites in repairing heat-damaged RC columns. *Materials and Structures,*
*46*(11), 1843–1860.

Article
Google Scholar

Arioz, O. (2007). Effects of elevated temperatures on properties of concrete. *Fire Safety Journal,*
*42*(8), 516–522.

Article
Google Scholar

Arioz, O. (2009). Retained properties of concrete exposed to high temperatures: Size effect. *Fire and Materials,*
*33*(5), 211–222.

Article
Google Scholar

Bailey, C., & Yaqub, M. (2012). Seismic strengthening of shear critical post-heated circular concrete columns wrapped with FRP composite jackets. *Composite Structures,*
*94*(3), 851–864.

Article
Google Scholar

Benzaid, R., Mesbah, H., & Chikh, N. (2010). FRP-confined concrete cylinders: Axial compression experiments and strength model. *Journal of Reinforced Plastics and Composites,*
*29*(16), 2469–2488.

Article
Google Scholar

Bisby, L. A., Chen, J. F., Li, S. Q., Stratford, T. J., Cueva, N., & Crossling, K. (2011). Strengthening fire-damaged concrete by confinement with fibre-reinforced polymer wraps. *Engineering Structures,*
*33*(12), 3381–3391.

Article
Google Scholar

Bisby, L. A., Dent, A. J. S., & Green, M. F. (2005). Comparison of confinement models for fiber-reinforced polymer-wrapped concrete. *ACI Structural Journal,*
*102*(1), 62–72.

Google Scholar

Campione, G. (2012). Load carrying capacity of RC compressed columns strengthened with steel angles and strips. *Engineering Structures,*
*40*, 457–465.

Article
Google Scholar

CAN, CSA-S806-12. (2012). *Design and construction of building structures with fibre-reinforced polymers*. Mississauga, ON: Canadian Standards Association.

Google Scholar

Carey, S. A., & Harries, K. A. (2005). Axial behavior and modeling of confined small-, medium-, and large-scale circular sections with carbon fiber reinforced polymer jackets. *ACI Structural Journal,*
*102*(4), 596–604.

Google Scholar

Chaallal, O., Hassan, M., & LeBlanc, M. (2006). Circular columns confined with FRP: Experimental versus predictions of models and guidelines. *ASCE Journal of Composites for Construction,*
*10*(1), 4–12.

Article
Google Scholar

Chan, Y., Peng, G., & Anson, M. (1999). Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures. *Cement & Concrete Composites,*
*21*(1), 23–27.

Article
Google Scholar

Chastre, C., & Silva, M. (2010). Monotonic axial behavior and modelling of RC circular columns confined with CFRP. *Engineering Structures,*
*32*(8), 2268–2277.

Article
Google Scholar

Chen, Y. H., Chang, Y. F., Yao, G. C., & Sheu, M. S. (2009). Experimental research on post-fire behaviour of reinforced concrete columns. *Fire Safety Journal,*
*44*(5), 741–748.

Article
Google Scholar

CNR. (2013). *CNR-DT 200 R1/2013: Guide for the design and construction of externally bonded FRP systems for strengthening existing structures*. Rome: Italian Research Council CNR Advisory Committee on Technical Recommendations for Construction.

Google Scholar

Cui, C., & Sheikh, S. (2010). Analytical model for circular normal- and high-strength concrete columns confined with FRP. *ASCE Journal of Composites for Construction,*
*14*(5), 562–572.

Article
Google Scholar

Dai, J., Bai, Y., & Teng, J. (2011). Behavior and modeling of concrete confined with FRP composites of large deformability. *ASCE Journal of Composites for Construction,*
*15*(6), 963–973.

Article
Google Scholar

De Lorenzis, L., & Tepfers, R. (2003). Comparative study of models on confinement of concrete cylinders with fiber-reinforced polymer composites. *ASCE Journal of Composites for Construction,*
*7*(3), 219–237.

Article
Google Scholar

El-Shaer, M. (2014). Structural analysis for concrete columns subjected to temperature. *Acta Technica Corviniensis*-*Bulletin of Engineering*. Tome VII, Fascicule 2 (April–June) ISSN: 2067-3809.

Fahmy, M., & Wu, Z. (2010). Evaluating and proposing models of circular concrete columns confined with different FRP composites. *Composites Part B Engineering,*
*41*(3), 199–213.

Article
Google Scholar

*Fib*. (2001). Externally bonded FRP reinforcement for RC structures. *Bulletin* No. 14, Technical Report, Fédération internationale du Béton, Lausanne, Switzerland.

Georgali, B., & Tsakiridis, P. E. (2005). Microstructure of fire-damaged concrete. A case study. *Cement & Concrete Composites,*
*27*(2), 255–259.

Article
Google Scholar

Hager, I. (2014). Colour change in heated concrete. *Fire Technology,*
*50*(4), 945–958.

Article
Google Scholar

Harajli, M. H. (2006). Axial stress-strain relationship for FRP confined circular and rectangular concrete columns. *Cement & Concrete Composites,*
*28*(10), 938–948.

Article
Google Scholar

Harries, K. A., & Kharel, G. (2002). Behavior and modeling of concrete subject to variable confining pressure. *ACI Materials Journal,*
*99*(2), 180–189.

Google Scholar

Hertz, K. D. (2003). Limits of spalling of fire-exposed concrete. *Fire Safety Journal,*
*38*(2), 103–116.

Article
MathSciNet
Google Scholar

Husem, M. (2006). The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete. *Fire Safety Journal,*
*41*(2), 155–163.

Article
Google Scholar

Jau, W. C., & Huang, K. L. (2008). A study of reinforced concrete corner columns after fire. *Cement & Concrete Composites,*
*30*(7), 622–638.

Article
Google Scholar

Jiang, T., & Teng, J. G. (2007). Analysis-oriented stress-strain models for FRP-confined concrete. *Engineering Structures,*
*29*(11), 2968–2986.

Article
Google Scholar

Lam, L., & Teng, J. G. (2003). Design-oriented stress-strain model for FRP-confined concrete. *Construction and Building Materials,*
*17*(6–7), 471–489.

Article
Google Scholar

Lam, L., & Teng, J. G. (2004). Ultimate condition of fiber reinforced polymer-confined concrete. *ASCE Journal of Composites for Construction,*
*8*(6), 539–548.

Article
Google Scholar

Lee, C., & Hegemier, G. (2009). Model of FRP-confined concrete cylinders in axial compression. *ASCE Journal of Composites for Construction,*
*13*(5), 442–454.

Article
Google Scholar

Liang, M., Wu, Z. M., Ueda, T., Zheng, J. J., & Akogbe, R. (2012). Experiment and modeling on axial behavior of carbon fiber reinforced polymer confined concrete cylinders with different sizes. *Journal of Reinforced Plastics and Composites,*
*31*(6), 389–403.

Article
Google Scholar

Lim, J. C., & Ozbakkaloglu, T. (2014a). Confinement model for FRP-confined high-strength concrete. *ASCE Journal of Composites for Construction,*
*18*(4), 1–19.

Article
Google Scholar

Lim, J. C., & Ozbakkaloglu, T. (2014b). Design model for FRP-confined normal and high-strength concrete square and rectangular columns. *Magazine of Concrete Research,*
*66*(20), 1020–1035.

Article
Google Scholar

Lim, J. C., & Ozbakkaloglu, T. (2015a). Unified stress-strain model for FRP and actively confined normal-strength and high-strength concrete. *ASCE Journal of Composites for Construction,*
*19*(4), 04014072-1–04014072-14.

Article
Google Scholar

Lim, J. C., & Ozbakkaloglu, T. (2015b). Hoop strains in FRP-confined concrete columns: Experimental observations. *Materials and Structures,*
*48*(9), 2839–2854.

Article
Google Scholar

Lin, C. H., Chen, S. T., & Yang, C. A. (1995). Repair of fire-damaged reinforced concrete columns. *ACI Structural Journal,*
*92*(4), 406–411.

Google Scholar

Lin, G., Yu, T., & Teng, J. (2016). Design-oriented stress-strain model for concrete under combined FRP-steel confinement. *ASCE Journal of Composites for Construction,*
*20*(4), 04015084-1–04015084-11.

Article
Google Scholar

Luo, X., Sun, W., & Chan, S. (2000). Effect of heating and cooling regimes on residual strength and microstructure of normal strength and high-performance concrete. *Cement and Concrete Research,*
*30*(3), 379–383.

Article
Google Scholar

Nassif, A. Y., Burley, E., & Rigden, S. (1995). A new quantitative method of assessing fire damage to concrete structures. *Magazine of Concrete Research,*
*47*(172), 271–278.

Article
Google Scholar

Netinger, I., Kesegic, I., & Guljas, I. (2011). The effect of high temperatures on the mechanical properties of concrete made with different types of aggregates. *Fire Safety Journal,*
*46*(7), 425–430.

Article
Google Scholar

Neves, I., Rodrigues, J., & Loureiro, A. (1996). Mechanical properties of reinforcing and prestressing steels after heating. *Journal of Materials in Civil Engineering,*
*8*(4), 189–194.

Article
Google Scholar

Ozbakkaloglu, T., & Lim, J. C. (2013). Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model. *Composites Part B Engineering,*
*55*, 607–634.

Article
Google Scholar

Ozbakkaloglu, T., Lim, J. C., & Vincent, T. (2013). FRP-confined concrete in circular sections: Review and assessment of stress-strain models. *Engineering Structures,*
*49*, 1068–1088.

Article
Google Scholar

Pellegrino, C., & Modena, C. (2010). Analytical model for FRP confinement of concrete columns with and without internal steel reinforcement. *ASCE Journal of Composites for Construction,*
*14*(6), 693–705.

Article
Google Scholar

Pham, T. M., & Hadi, M. N. S. (2014). Confinement model for FRP confined normal- and high-strength concrete circular columns. *Construction and Building Materials,*
*69*, 83–90.

Article
Google Scholar

Ramirez, J. L., Barcena, J. M., Urreta, J. I., & Sanchez, J. A. (1997). Efficiency of short steel jackets for strengthening square section concrete columns. *Construction and Building Materials,*
*11*(5–6), 345–352.

Article
Google Scholar

Rocca, S., Galati, N., & Nanni, A. (2008). Review of design guidelines for FRP confinement of reinforced concrete columns of noncircular cross sections. *ASCE Journal of Composites for Construction,*
*12*(1), 80–92.

Article
Google Scholar

Roy, A., Sharma, U., & Bhargava, P. (2014). Strengthening of heat damaged reinforced concrete short columns. *Journal of Structural Fire Engineering,*
*5*(4), 381–398.

Article
Google Scholar

Roy, A., Sharma, U., & Bhargava, P. (2016). Confinement strengthening of heat-damaged reinforced concrete columns. *Magazine of Concrete Research,*
*68*(6), 291–304.

Article
Google Scholar

Saenz, N., & Pantelides, C. (2007). Strain-based confinement model for FRP confined concrete. *Journal of Structural Engineering,*
*133*(6), 825–833.

Article
Google Scholar

Shahawy, M., Mirmiran, A., & Beitelman, T. (2000). Tests and modeling of carbon-wrapped concrete columns. *Composites Part B Engineering,*
*31*, 471–480.

Article
Google Scholar

Tahir, M. F., Yaqub, M., Bukhari, I., Tufail, R. F., & Tahir, A. (2013). Effect of carbon fiber reinforced polymer confinement on the fire damaged and un-heated reinforced concrete square columns. *Life Science Journal,*
*10*(12s), 791–799.

Google Scholar

Teng, J. G., Huang, Y. L., Lam, L., & Ye, L. (2007). Theoretical model for fiber reinforced polymer-confined concrete. *ASCE Journal of Composites for Construction,*
*11*(2), 201–210.

Article
Google Scholar

Teng, J. G., Jiang, T., Lam, L., & Luo, Y. Z. (2009). Refinement of a design-oriented stress-strain model for FRP-confined concrete. *ASCE Journal of Composites for Construction,*
*13*(4), 269–278.

Article
Google Scholar

Teng, J. G., & Lam, L. (2004). Behavior and modeling of fiber-reinforced polymer-confined concrete. *Journal of Structural Engineering,*
*130*(11), 1713–1723.

Article
Google Scholar

Tolentino, E., Lameiras, F. S., Gomes, A. M., Rigo da Silva, C. A., & Vasconcelos, W. L. (2002). Effects of high temperature on the residual performance of Portland cement concretes. *Materials Research,*
*5*(3), 301–307.

Article
Google Scholar

TR 55. (2012). Design guidance for strengthening concrete structures using fibre composite materials (3rd ed.) Technical Report No. 55, Concrete Society, Crowthorne, UK.

Wei, Y. Y., & Wu, Y. F. (2012). Unified stress-strain model of concrete for FRP-confined columns. *Construction and Building Materials,*
*26*(1), 381–392.

Article
Google Scholar

Wu, Y. F., & Jiang, J. F. (2013). Effective strain of FRP for confined circular concrete columns. *Composite Structures,*
*95*, 479–491.

Article
Google Scholar

Wu, Y. F., & Wang, L. M. (2009). Unified strength model for square and circular concrete columns confined by external jacket. *ASCE Journal of Structural Engineering,*
*135*(3), 253–261.

Article
Google Scholar

Xiao, Y., & Wu, H. (2000). Compressive behavior of concrete confined by carbon fiber composite jackets. *ASCE Journal of Materials in Civil Engineering,*
*12*(2), 139–146.

Article
MathSciNet
Google Scholar

Xiong, G. J., Wu, X. Y., Li, F. F., & Yan, Z. (2011). Load carrying capacity and ductility of circular concrete columns confined by ferrocement including steel bars. *Construction and Building Materials,*
*25*(5), 2263–2268.

Article
Google Scholar

Yaqub, M., & Bailey, C. G. (2011a). Repair of fire damaged circular reinforced concrete columns with FRP composites. *Construction and Building Materials,*
*25*(1), 359–370.

Article
Google Scholar

Yaqub, M., & Bailey, C. G. (2011b). Cross sectional shape effects on the performance of post-heated reinforced concrete columns wrapped with FRP composites. *Composite Structures,*
*93*(3), 1103–1117.

Article
Google Scholar

Yaqub, M., & Bailey, C. G. (2012). Seismic performance of shear critical post-heated reinforced concrete square columns wrapped with FRP composites. *Construction and Building Materials,*
*34*, 457–469.

Article
Google Scholar

Yaqub, M., Bailey, C. G., & Nedwell, P. (2011). Axial capacity of post-heated square columns wrapped with FRP composites. *Cement & Concrete Composites,*
*33*(6), 694–701.

Article
Google Scholar

Yaqub, M., Bailey, C. G., Nedwell, P., Khan, Q. U. Z., & Javed, I. (2013). Strength and stiffness of post-heated columns repaired with ferrocement and fibre reinforced polymer jackets. *Composites Part B Engineering,*
*44*(1), 200–211.

Article
Google Scholar

Yaqub, M., & Ghani, U. (2013). Assessment of residual strength based on estimated temperature of post-heated RC columns. *Mehran University Research Journal of Engineering and Technology,*
*32*(1), 55–70.

Google Scholar

Youssef, M. N., Feng, M. Q., & Mosallam, A. S. (2007). Stress-strain model for concrete confined by FRP composites. *Composites Part B Engineering,*
*38*(5–6), 614–628.

Article
Google Scholar

Zhang, B., Bicanic, N., Pearce, C. J., & Balabanic, G. (2000). Assessment of toughness of concrete subject to elevated temperatures from a complete load-displacement curve—Part 2: Experimental investigations. *ACI Materials Journal,*
*97*(5), 556–566.

Google Scholar