Abbas, S., Nehdi, M. L., & Saleem, M. A. (2016). Ultra-high performance concrete: Mechanical performance, durability, sustainability and implementation challenges. International Journal of Concrete Structures and Materials,
10(3), 271–295. doi:10.1007/s40069-016-0157-4.
Article
Google Scholar
Abrams, D. A. (1927). Water-cement ratio as a basis of concrete quality. ACI Journal Proceedings,
23(2), 452–457.
Google Scholar
ACI 216.1. (1997). Standard method for determining fire resistance of concrete and masonry construction assemblies.
ACI 213. (2003). Guide for structural lightweight-aggregate concrete.
ACI Committee 318. (2007). Building code requirements for structural concrete (ACI 318M-08) (Vol. 2007).
ASTM C 1437-99. (1999). Standard test method for flow of hydraulic cement mortar. American Society for Testing and Materials, 1–2. doi:10.1520/C1437-13.2
ASTM C230. (2003). Standard specification for flow table for use in tests of hydraulic cement. American Society for Testing and Materials. doi:10.1520/C0230
ASTM D790-10. (2010). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. American Society for Testing and Materials. doi:10.1520/D0790-10
Bouvard, D., Chaix, J. M., Dendievel, R., Fazekas, A., Létang, J. M., Peix, G., et al. (2007). Characterization and simulation of microstructure and properties of EPS lightweight concrete. Cement and Concrete Research,
37(12), 1666–1673. doi:10.1016/j.cemconres.2007.08.028.
Article
Google Scholar
Chandra, S., & Berntsson, L. (2002). Lightweight aggregate concrete: Science, technology, and applications. Norwich, NY: Noyes Publications/William Andrew Publishing.
Google Scholar
Chávez-Valdez, A., Arizmendi-Morquecho, A., Vargas, G., Almanza, J. M., & Alvarez-Quintana, J. (2011). Ultra-low thermal conductivity thermal barrier coatings from recycled fly-ash cenospheres. Acta Materialia,
59(6), 2556–2562. doi:10.1016/j.actamat.2011.01.011.
Article
Google Scholar
Chen, B., & Liu, N. (2013). A novel lightweight concrete-fabrication and its thermal and mechanical properties. Construction and Building Materials,
44(2013), 691–698. doi:10.1016/j.conbuildmat.2013.03.091.
Article
Google Scholar
de Gennaro, R., Langella, A., D’Amore, M., Dondi, M., Colella, A., Cappelletti, P., et al. (2008). Use of zeolite-rich rocks and waste materials for the production of structural lightweight concretes. Applied Clay Science,
41(1–2), 61–72. doi:10.1016/j.clay.2007.09.008.
Article
Google Scholar
Demirboǧa, R., Örüng, I., & Gül, R. (2001). Effects of expanded perlite aggregate and mineral admixtures on the compressive strength of low-density concretes. Cement and Concrete Research,
31(11), 1627–1632. doi:10.1016/S0008-8846(01)00615-9.
Article
Google Scholar
Ducman, V., & Mladenovic, A. (2004). Alkali—silica reactivity of some frequently used lightweight aggregates. Cement and Concrete Research,
34(2004), 1809–1816. doi:10.1016/j.cemconres.2004.01.017.
Google Scholar
3M Energy and Advanced Materials Division. 3M™ glass microspheres compounding and injection molding guidelines (2007). http://multimedia.3m.com/mws/media/426234O/3mtm-glass-microspheres-compounding-and-inj-molding-guide.pdf
Gao, T., Jelle, B. P., Gustavsen, A., & Jacobsen, S. (2014). Aerogel-incorporated concrete: An experimental study. Construction and Building Materials,
52(2014), 130–136. doi:10.1016/j.conbuildmat.2013.10.100.
Article
Google Scholar
Hanif, A., Diao, S., Lu, Z., Fan, T., & Li, Z. (2016). Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres—Mechanical and thermal insulating properties. Construction and Building Materials,
116, 422–430. doi:10.1016/j.conbuildmat.2016.04.134.
Article
Google Scholar
Hassanpour, M., Shafigh, P., & Mahmud, H. Bin. (2012). Lightweight aggregate concrete fiber reinforcement—A review. Construction and Building Materials,
37, 452–461. doi:10.1016/j.conbuildmat.2012.07.071.
Article
Google Scholar
Katz, A. J., & Thompson, A. H. (1986). Quantitative prediction of permeability in porous rock. Physical Review B,
34(11), 8179–8181. doi:10.1103/PhysRevB.34.8179.
Article
Google Scholar
Ke, Y., Beaucour, A. L., Ortola, S., Dumontet, H., & Cabrillac, R. (2009). Influence of volume fraction and characteristics of lightweight aggregates on the mechanical properties of concrete. Construction and Building Materials,
23(8), 2821–2828. doi:10.1016/j.conbuildmat.2009.02.038.
Article
Google Scholar
Kim, S., Seo, J., Cha, J., & Kim, S. (2013). Chemical retreating for gel-typed aerogel and insulation performance of cement containing aerogel. Construction and Building Materials,
40, 501–505. doi:10.1016/j.conbuildmat.2012.11.046.
Article
Google Scholar
Kramar, D., & Bindiganavile, V. (2010). Mechanical properties and size effects in lightweight mortars containing expanded perlite aggregate. Materials and Structures,
44(4), 735–748. doi:10.1617/s11527-010-9662-0.
Article
Google Scholar
Kramar, D., & Bindiganavile, V. (2013). Impact response of lightweight mortars containing expanded perlite. Cement & Concrete Composites,
37(2013), 205–214. doi:10.1016/j.cemconcomp.2012.10.004.
Article
Google Scholar
Kwan, A. K. H., & Chen, J. J. (2013). Adding fly ash microsphere to improve packing density, flowability and strength of cement paste. Powder Technology,
234(2013), 19–25. doi:10.1016/j.powtec.2012.09.016.
Article
Google Scholar
Lanzón, M., & García-Ruiz, P. A. (2008). Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Construction and Building Materials,
22(8), 1798–1806. doi:10.1016/j.conbuildmat.2007.05.006.
Article
Google Scholar
Li, Z. (2011). Advanced concrete technology. New York, NY: Wiley.
Book
Google Scholar
Lotfy, A., Hossain, K. M. A., & Lachemi, M. (2015). Lightweight self-consolidating concrete with expanded shale aggregates: Modelling and optimization. International Journal of Concrete Structures and Materials,
9(2), 185–206. doi:10.1007/s40069-015-0096-5.
Article
Google Scholar
Lowell, S., & Shields, J. E. (1991). Powder surface area and porosity (3rd ed.). London, UK: Chapman and Hall Ltd. doi:10.1007/978-94-015-7955-1.
Google Scholar
Lu, Z., Xu, B., Zhang, J., Zhu, Y., Sun, G., & Li, Z. (2014). Preparation and characterization of expanded perlite/paraffin composite as form-stable phase change material. Solar Energy,
108, 460–466. doi:10.1016/j.solener.2014.08.008.
Article
Google Scholar
Ma, H. (2014). Mercury intrusion porosimetry in concrete technology: Tips in measurement, pore structure parameter acquisition and application. Journal of Porous Materials,
21(2), 207–215. doi:10.1007/s10934-013-9765-4.
Article
Google Scholar
Ma, H., Hou, D., Liu, J., & Li, Z. (2014). Estimate the relative electrical conductivity of C-S-H gel from experimental results. Construction and Building Materials,
71, 392–396. doi:10.1016/j.conbuildmat.2014.08.036.
Article
Google Scholar
Ma, H., & Li, Z. (2013). Realistic pore structure of Portland cement paste: Experimental study and numerical simulation. Computers & Concrete,
11(4), 317–336. doi:10.12989/cac.2013.11.4.317.
Article
Google Scholar
Mala, K., Mullick, A. K., Jain, K. K., & Singh, P. K. (2013). Effect of relative levels of mineral admixtures on strength of concrete with ternary cement blend. International Journal of Concrete Structures and Materials,
7(3), 239–249. doi:10.1007/s40069-013-0049-9.
Article
Google Scholar
Miled, K., Sab, K., & Le Roy, R. (2007). Particle size effect on EPS lightweight concrete compressive strength: Experimental investigation and modelling. Mechanics of Materials,
39(3), 222–240. doi:10.1016/j.mechmat.2006.05.008.
Article
Google Scholar
Ng, S., Jelle, B. P., Sandberg, L. I. C., Gao, T., & Wallevik, Ó. H. (2015). Experimental investigations of aerogel-incorporated ultra-high performance concrete. Construction and Building Materials,
77, 307–316. doi:10.1016/j.conbuildmat.2014.12.064.
Article
Google Scholar
Palik, E. S. (1977). Specific surface area measurements on ceramic powders. Powder Technology,
18, 45–48.
Article
Google Scholar
Pereira, C. J., Rice, R. W., & Skalny, J. P. (1989). Pore structure and its relationship to properties of materials. In L. R. Roberts & J. P. Skalny (Eds.), Materials research society symposium proceedings (Vol. 137, pp. 3–21). Pittsbutrgh, PA: Materials Research Society.
Google Scholar
Pichór, W. (2009). Properties of fiber reinforced cement composites with cenospheres from coal ash. Brittle Matrix Composites,
9, 245. doi:10.1533/9781845697754.245.
Article
Google Scholar
Rashad, A. M., Seleem, H. E. D. H., & Shaheen, A. F. (2014). Effect of silica fume and slag on compressive strength and abrasion resistance of HVFA concrete. International Journal of Concrete Structures and Materials,
8(1), 69–81. doi:10.1007/s40069-013-0051-2.
Article
Google Scholar
Rice, R. W. (1998). Porosity of ceramics: Properties and applications. Boca Raton, FL: CRC Press.
Google Scholar
Saradhi Babu, D., Ganesh Babu, K., & Wee, T. H. (2005). Properties of lightweight expanded polystyrene aggregate concretes containing fly ash. Cement and Concrete Research,
35(6), 1218–1223. doi:10.1016/j.cemconres.2004.11.015.
Article
Google Scholar
Sharifi, Y., Afshoon, I., Firoozjaei, Z., & Momeni, A. (2016). Utilization of waste glass micro-particles in producing self-consolidating concrete mixtures. International Journal of Concrete Structures and Materials. doi:10.1007/s40069-016-0141-z.
Google Scholar
Spiesz, P., Yu, Q. L., & Brouwers, H. J. H. (2013). Development of cement-based lightweight composites—Part 2: Durability-related properties. Cement & Concrete Composites,
44(2013), 30–40. doi:10.1016/j.cemconcomp.2013.03.029.
Article
Google Scholar
Topçu, İ. B., & Işıkdağ, B. (2008). Effect of expanded perlite aggregate on the properties of lightweight concrete. Journal of Materials Processing Technology,
204(1–3), 34–38. doi:10.1016/j.jmatprotec.2007.10.052.
Article
Google Scholar
Wang, J.-Y., Chia, K.-S., Liew, J.-Y. R., & Zhang, M.-H. (2013). Flexural performance of fiber-reinforced ultra lightweight cement composites with low fiber content. Cement & Concrete Composites,
43, 39–47. doi:10.1016/j.cemconcomp.2013.06.006.
Article
Google Scholar
Wang, J. Y., Yang, Y., Liew, J. Y. R., & Zhang, M. H. (2014). Method to determine mixture proportions of workable ultra lightweight cement composites to achieve target unit weights. Cement & Concrete Composites,
53, 178–186. doi:10.1016/j.cemconcomp.2014.07.006.
Article
Google Scholar
Wang, J. Y., Zhang, M. H., Li, W., Chia, K. S., & Liew, R. J. Y. (2012). Stability of cenospheres in lightweight cement composites in terms of alkali-silica reaction. Cement and Concrete Research,
42(5), 721–727. doi:10.1016/j.cemconres.2012.02.010.
Article
Google Scholar
Washburn, E. W. (1921). Note on a method of determining the distribution of pore sizes in a porous material. Proceedings of the National Academy of Sciences of the United States of America,
7(4), 115–116. doi:10.1073/pnas.7.4.115.
Article
Google Scholar
Woignier, T., & Phalippou, J. (1988). Mechanical strength of silica aerogels. Journal of Non-Crystalline Solids,
100(1–3), 404–408. doi:10.1016/0022-3093(88)90054-3.
Article
Google Scholar
Wu, Y., Wang, J.-Y., Monteiro, P. J. M., & Zhang, M.-H. (2015). Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings. Construction and Building Materials,
87, 100–112. doi:10.1016/j.conbuildmat.2015.04.004.
Article
Google Scholar
Xu, B., Ma, H., & Hu, C. (2015). Influence of cenospheres on properties of magnesium oxychloride cement-based composites. Materials and Structures. doi:10.1617/s11527-015-0578-6.
Google Scholar
Yu, Q. L., Spiesz, P., & Brouwers, H. J. H. (2013). Development of cement-based lightweight composites—Part 1: Mix design methodology and hardened properties. Cement & Concrete Composites,
44(2013), 17–29. doi:10.1016/j.cemconcomp.2013.03.030.
Article
Google Scholar