Alnahhal, M. F., Kim, T., & Hajimohammadi, A. (2021). Waste-derived activators for alkali-activated materials: A review. Cement and Concrete Composites. https://doi.org/10.1016/j.cemconcomp.2021.103980
Article
Google Scholar
Al Rikabi, F. T., Sargand, S. M., Khoury, I., & Hussein, H. H. (2018). Material properties of synthetic fiber-reinforced concrete under freeze-thaw conditions. Journal of Materials in Civil Engineering, 30(6), 04018090. https://doi.org/10.1061/(asce)mt.1943-5533.0002297
Article
Google Scholar
Ashish, D. K. (2019). Concrete made with waste marble powder and supplementary cementitious material for sustainable development. Journal of Cleaner Production, 211, 716–729. https://doi.org/10.1016/j.jclepro.2018.11.245
Article
Google Scholar
Ashish, D. K., & Verma, S. K. (2019). Cementing efficiency of flash and rotary-calcined metakaolin in concrete. Journal of Materials in Civil Engineering, 31(12), 04019307. https://doi.org/10.1061/(asce)mt.1943-5533.0002953
Article
Google Scholar
ASTM Standard C109. (2020). Standard test method for compressive strength of hydraulic cement mortars. Standard, ASTM International, West Conshohocken, PA.
ASTM Standard C215. (2020). Standard test method for fundamental transverse, longitudinal, and torsional resonant frequencies of concrete specimens. Standard, ASTM International, West Conshohocken, PA. https://doi.org/10.1520/C0215-19
Billong, N., Oti, J., & Kinuthia, J. (2021). Using silica fume based activator in sustainable geopolymer binder for building application. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2020.122177.
Article
Google Scholar
Bouasker, M., Mounanga, P., Turcry, P., Loukili, A., & Khelidj, A. (2008). Chemical shrinkage of cement pastes and mortars at very early age: Effect of limestone filler and granular inclusions. Cement and Concrete Composites, 30(1), 13–22. https://doi.org/10.1016/j.cemconcomp.2007.06.004.
Article
Google Scholar
Chaipanich, A., Wianglor, K., Piyaworapaiboon, M., & Sinthupinyo, S. (2019). Thermogravimetric analysis and microstructure of alkali-activated metakaolin cement pastes. Journal of Thermal Analysis and Calorimetry, 138(3), 1965–1970. https://doi.org/10.1007/s10973-019-08592-z.
Article
Google Scholar
Chen, S., Wu, C., & Yan, D. (2019). Binder-scale creep behavior of metakaolin-based geopolymer. Cement and Concrete Research, 124,. https://doi.org/10.1016/j.cemconres.2019.105810.
Article
Google Scholar
Chindaprasirt, P., Paisitsrisawat, P., & Rattanasak, U. (2014). Strength and resistance to sulfate and sulfuric acid of ground fluidized bed combustion fly ash-silica fume alkali-activated composite. Advanced Powder Technology, 25(3), 1087–1093. https://doi.org/10.1016/j.apt.2014.02.007
Article
Google Scholar
Cho, T. (2007). Prediction of cyclic freeze-thaw damage in concrete structures based on response surface method. Construction and Building Materials, 21(12), 2031–2040. https://doi.org/10.1016/j.conbuildmat.2007.04.018
Article
Google Scholar
Damilola, O. M. (2013). Syntheses, characterization and binding strength of geopolymers: A review. International Journal of Materials Science and Applications, 2(6), 185. https://doi.org/10.11648/j.ijmsa.20130206.14.
Article
Google Scholar
Duan, P., Yan, C., & Zhou, W. (2017). Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle. Cement and Concrete Composites, 78, 108–119. https://doi.org/10.1016/j.cemconcomp.2017.01.009.
Article
Google Scholar
Dutta, D., Thokchom, S., Ghosh, P., & Ghosh, S. (2010). Effect of silica fume additions on porosity of fly ash geopolymers. Journal of Engineering and Applied Sciences, 5(10), 74–79.
Google Scholar
Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriven, W. M., & van Deventer, J. S. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269(1–3), 47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060.
Article
Google Scholar
ISO 9597:2008. (2008). Cement - Test methods - Determination of setting time and soundness. International Organization for Standardization, Geneva, CH: Standard.
Jithendra, C., & Elavenil, S. (2020). Effects of silica fume on workability and compressive strength properties of aluminosilicate based flowable geopolymer mortar under ambient curing. Silicon, 12(8), 1965–1974. https://doi.org/10.1007/s12633-019-00308-0.
Article
Google Scholar
Khater, H. M. (2013). Effect of silica fume on the characterization of the geopolymer materials. Khater International Journal of Advanced Structural Engineering, 5(12), 1–10. https://doi.org/10.1186/2008-6695-5-12
Article
Google Scholar
Kuenzel, C., Vandeperre, L. J., Donatello, S., Boccaccini, A. R., & Cheeseman, C. (2012). Ambient temperature drying shrinkage and cracking in metakaolin-based geopolymers. Journal of the American Ceramic Society, 95(10), 3270–3277. https://doi.org/10.1111/j.1551-2916.2012.05380.x.
Article
Google Scholar
Latella, B. A., Perera, D. S., Durce, D., Mehrtens, E. G., & Davis, J. (2008). Mechanical properties of metakaolin-based geopolymers with molar ratios of Si/Al = 2 and Na/Al = 1. Journal of Materials Science, 43(8), 2693–2699. https://doi.org/10.1007/s10853-007-2412-1.
Article
Google Scholar
Li, Z., Zhang, S., Zuo, Y., Chen, W., & Ye, G. (2019). Chemical deformation of metakaolin based geopolymer. Cement and Concrete Research, 120, 108–118. https://doi.org/10.1016/j.cemconres.2019.03.017.
Article
Google Scholar
Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., & Illikainen, M. (2018). One-part alkali-activated materials: A review. Cement and Concrete Research, 103, 21–34. https://doi.org/10.1016/j.cemconres.2017.10.001.
Article
Google Scholar
Mehta, A., & Ashish, D. K. (2020). Silica fume and waste glass in cement concrete production: A review. Journal of Building Engineering, 29(July 2019). https://doi.org/10.1016/j.jobe.2019.100888.
Article
Google Scholar
Natali Murri, A., Medri, V., Papa, E., Laghi, L., Mingazzini, C., Landi, E., et al. (2017). Porous geopolymer insulating core from a metakaolin/biomass ash composite. Environments, 4(4), 86. https://doi.org/10.3390/environments4040086.
Article
Google Scholar
Nmiri, A., Duc, M., Hamdi, N., Yazoghli-Marzouk, O., & Srasra, E. (2019). Replacement of alkali silicate solution with silica fume in metakaolin-based geopolymers. International Journal of Minerals, Metallurgy and Materials, 26(5), 555–564. https://doi.org/10.1007/s12613-019-1764-2.
Article
Google Scholar
Nuruddin, M. F., Qazi, S., Shafiq, N., & Kusbiantoro, A. (2010). Compressive strength & microstructure of polymeric concrete incorporating fly ash & silica fume. Canadian Journal on Civil Engineering, 1(1), 15–18.
Google Scholar
Okoye, F., Durgaprasad, J., & Singh, N. (2016). Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceramics International, 42(2), 3000–3006. https://doi.org/10.1016/j.ceramint.2015.10.084.
Article
Google Scholar
Oyebisi, S., Ede, A., Olutoge, F., & Olukanni, D. (2020). Assessment of activity moduli and acidic resistance of slag-based geopolymer concrete incorporating pozzolan. Case Studies in Construction Materials, 13,. https://doi.org/10.1016/j.cscm.2020.e00394.
Article
Google Scholar
Park, S., & Pour-ghaz, M. (2018). What is the role of water in the geopolymerization of metakaolin. Construction and Building Materials, 182, 360–370. https://doi.org/10.1016/j.conbuildmat.2018.06.073.
Article
Google Scholar
Provis, J. L., Yong, C. Z., Duxson, P., & van Deventer, J. S. (2009). Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 336(1–3), 57–63. https://doi.org/10.1016/j.colsurfa.2008.11.019.
Article
Google Scholar
Rostami, M., & Behfarnia, K. (2017). The effect of silica fume on durability of alkali activated slag concrete. Construction and Building Materials, 134, 262–268. https://doi.org/10.1016/j.conbuildmat.2016.12.072.
Article
Google Scholar
Rowles, M., & O’Connor, B. (2003). Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite. Journal of Materials Chemistry, 13(5), 1161–1165. https://doi.org/10.1039/b212629j.
Article
Google Scholar
Sabbatini, A., Vidal, L., Pettinari, C., Sobrados, I., & Rossignol, S. (2017). Control of shaping and thermal resistance of metakaolin-based geopolymers. Materials & Design, 116, 374–385. https://doi.org/10.1016/j.matdes.2016.12.039.
Article
Google Scholar
Sargolzahi, M., Kodjo, S. A., Rivard, P., & Rhazi, J. (2010). Effectiveness of nondestructive testing for the evaluation of alkali-silica reaction in concrete. Construction and Building Materials, 24(8), 1398–1403. https://doi.org/10.1016/j.conbuildmat.2010.01.018.
Article
Google Scholar
Silva, P. D., Sagoe-Crenstil, K., & Sirivivatnanon, V. (2007). Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cement and Concrete Research, 37(4), 512–518. https://doi.org/10.1016/j.cemconres.2007.01.003.
Article
Google Scholar
Songpiriyakij, S., Kubprasit, T., Jaturapitakkul, C., & Chindaprasirt, P. (2010). Compressive strength and degree of reaction of biomass- and fly ash-based geopolymer. Construction and Building Materials, 24(3), 236–240. https://doi.org/10.1016/j.conbuildmat.2009.09.002.
Article
Google Scholar
Sukontasukkul, P., Chindaprasirt, P., Pongsopha, P., Phoo-Ngernkham, T., Tangchirapat, W., & Banthia, N. (2020). Effect of fly ash/silica fume ratio and curing condition on mechanical properties of fiber-reinforced geopolymer. Journal of Sustainable Cement-Based Materials, 9(4), 218–232. https://doi.org/10.1080/21650373.2019.1709999.
Article
Google Scholar
Suraneni, P., Puligilla, S., Kim, E. H., Chen, X., Struble, L. J., & Mondal, P. (2014). Monitoring setting of geopolymers. Advances in Civil Engineering Materials, 3(1), 20130100. https://doi.org/10.1520/ACEM20130100.
Article
Google Scholar
Tempest, B., Snell, C., Gentry, T., Trejo, M., & Isherwood, K. (2015). Manufacture of full-scale geopolymer cement concrete components: A case study to highlight opportunities and challenges. PCI Journal, 60(6), 39–50. https://doi.org/10.15554/pcij.11012015.39.50.
Article
Google Scholar
Thokchom, S., Dutta, D., & Ghosh, S. (2011). Effect of incorporating silica fume in fly ash geopolymers. International Journal of Civil and Environmental Engineering, 5(12), 750–754.
Google Scholar
Uysal, M., Al-mashhadani, M. M., Aygörmez, Y., & Canpolat, O. (2018). Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars. Construction and Building Materials, 176, 271–282. https://doi.org/10.1016/j.conbuildmat.2018.05.034.
Article
Google Scholar
Wan, Q., Rao, F., Song, S., García, R. E., Estrella, R. M., Patiño, C. L., et al. (2017). Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cement and Concrete Composites, 79, 45–52. https://doi.org/10.1016/j.cemconcomp.2017.01.014.
Article
Google Scholar
Wu, H. C., & Sun, P. (2010). Effect of mixture compositions on workability and strength of fly ash-based inorganic polymer mortar. ACI Materials Journal, 107(6), 554–561. https://doi.org/10.14359/51664041.
Article
Google Scholar