ACI 440.1R-15. (2015). Guide for the design and construction of concrete reinforced with fiber reinforced polymers (FRP) bars. ACI Committee 440. Farmington Hills: American Concrete Institute.
Google Scholar
ACI (American concrete institute). (2002). Building code requirements for structural concrete (ACI 318-05). Farmington Hills: American Concrete Institute.
Google Scholar
Ahmed, H., Jaf, D., & Yaseen, S. (2020). Flexural capacity and behaviour of geopolymer concrete beams reinforced with glass fibre-reinforced polymer bars. International Journal of Concrete Structures and Materials. https://doi.org/10.1186/s40069-019-0389-1
Article
Google Scholar
Ankur, M., & Rafat, S. (2017). Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2017.06.067
Article
Google Scholar
Antoni, A., Purwantoro, A., Suyanto, W., et al. (2020). Fresh and hardened properties of high calcium fly ash-based geopolymer matrix with high dosage of borax. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44, 535–543. https://doi.org/10.1007/s40996-019-00330-7
Article
Google Scholar
Ayoub, A., Abdellah, B., Abdelilah, B., Thamer, A., Iz-Eddine, E., Mohammed, A., Hamid, E., Yassine, E., & FaizUddin, A. (2021). Effect of acidic volcanic perlite rock on physio-mechanical properties and microstructure of natural pozzolan based geopolymers. Case Studies in Construction Materials, 15, 2214–5095. https://doi.org/10.1016/j.cscm.2021.e00712
Article
Google Scholar
Chakravarthy, R., Venkatesan, S., & Patnaikuni, I. (2016). Mechanical properties of high volume fly ash concrete reinforced with hybrid fibers. Advances in Materials Science and Engineering. https://doi.org/10.1155/2016/1638419
Article
Google Scholar
Chunyang, L., Qingping, W., Yuxin, L., Tingting, X., Qingbo, Y., & Shuai, C. (2022). Influence of new organic alkali activators on microstructure and strength of fly ash geopolymer. Ceramics International. https://doi.org/10.1016/j.ceramint.2022.01.109
Article
Google Scholar
Colangelo, F., Roviello, G., Ricciotti, L., Ferrandiz-Mas, V., Messina, F., Ferone, C., Tarallo, O., Cioffi, R., & Cheeseman, C. (2018). Mechanical and thermal properties of lightweight geo-polymer composites. Cement and Concrete Composites, 86, 266–272. https://doi.org/10.1016/j.cemconcomp.2017.11.016
Article
Google Scholar
Ravina, D., & Mehta, P.K. (1986). Properties of fresh concrete containing large amounts of fly ash. Cement and Concrete Research, 16(2), 227–238. https://doi.org/10.1016/0008-8846(86)90139-0
Article
Google Scholar
Dattatreya, J., Rajamane, N., Sabitha, D., Ambily, P., & Nataraja, M. (2011). Flexural behaviour of reinforced geopolymer concrete beams. International Journal of Civil and Structural Engineering, 2(1), 138–159. https://doi.org/10.1109/ICEEOT.2016.7755347
Article
Google Scholar
Davidovits, J. (1991). Geopolymers geopolymers inorganic polymeric new materials. Journal of Thermal Analysis, 37, 1633–1656. https://doi.org/10.1007/bf01912193
Article
Google Scholar
Davis, R., Carlson, R., Kelly, J., & Davis, A. (1937). Properties of cements and concretes containing fly ash. Journal Proceedings, 33(1937), 577–612.
Google Scholar
Diaz-Loya, E., Allouche, E., & Vaidya, S. (2011). Mechanical properties of fly ash based geopolymer concrete. ACI Materials Journal, 108(3), 300–306.
Google Scholar
Duxson, P., Provis, J., Lukey, G., & VanDeventer, J. (2007). The role of inorganic polymer technology in the development of ‘green concrete.’ Cement and Concrete Research, 37(12), 1590–1597. https://doi.org/10.1016/j.cemconres.2007.08.018
Article
Google Scholar
Fan, F., Liu, Z., Xu, G., Peng, H., & Cai, C. (2018). Mechanical and thermal properties of fly ash based geo-polymers. Construction and Building Materials, 160, 66–81. https://doi.org/10.1016/j.conbuildmat.2017.11.023
Article
Google Scholar
Görhan, G., & Kürklü, G. (2014). The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Composites, Part b: Engineering, 58, 371–377. https://doi.org/10.1016/j.compositesb.2013.10.082
Article
Google Scholar
Graytee, J., Sanjayan, A., & Nazari,. (2018). Development of a high strength fly ash based geopolymer in short time by using microwave curing. Ceramics International, 44, 8216–8222. https://doi.org/10.1016/J.CERAMINT.2018.02.001
Article
Google Scholar
Hardjito, D., & Cheak, C. (2008). Strength and setting times of low calcium fly ash based geopolymer mortar. Modern Applied Science, 2(4), 3–11. https://doi.org/10.5539/mas.v2n4p3
Article
Google Scholar
Hardjito, D., Wallah, S., Sumajouw, D., & Rangan, B. (2004). On the development of fly ash- based geopolymer concrete. ACI Materials Journal, 101, 467–472. https://doi.org/10.14359/13485
Article
Google Scholar
IS 383-1970, Indian Standard. (1970). Specification of course and fine aggregates from natural sources for concrete. New Delhi: BIS.
Google Scholar
IS: 456-2000, Indian Standard. (2000). Plain and reinforced concrete—code of practice. New Delhi: BIS.
Google Scholar
IS 2386(part-I), Indian Standard. (1963). Methods of test for aggregate for concrete. New Delhi: BIS.
Google Scholar
Khale, D., & Chaudhary, R. (2007). Mechanism of geopolymerization and factors influencing its development: A review. Journal of Materials Science, 42(3), 729–746. https://doi.org/10.1007/s10853-006-0401-4
Article
Google Scholar
Khan, M., Zafar, A., Farooq, F., Javed, M., Alyousef, R., Alabduljabbar, H., & Khan, M. (2018). Geopolymer concrete compressive strength via artificial neural network, adaptive neuro fuzzy interface system, and gene expression programming with K-fold cross validation. Frontiers in Materials. https://doi.org/10.3389/fmats.2021.621163
Article
Google Scholar
Kolezynski, A., Król, M., & Żychowicz, M. (2018). The structure of geopolymers Theoretical studies. Journal of Molecular Structure, 1163, 465–471. https://doi.org/10.1016/j.molstruc.2018.03.033
Article
Google Scholar
Komnitsas, K., & Zaharaki, D. (2007). Geopolymerisation: a review and prospects for the minerals industry. Mineral Engineering, 20(14), 1261–1277. https://doi.org/10.1016/j.mineng.2007.07.011
Article
Google Scholar
Liew, Y., Heah, C., & Kamarudin, H. (2016). Structure and properties of clay-based geopolymer cements: a review. Progress in Materials Science, 83, 595–629. https://doi.org/10.1016/j.pmatsci.2016.08.002
Article
Google Scholar
Lloyd, N., Rangan, B., Zachar, J., Claisse, P., Naik, T., & Ganjian, G. (2010). Geopolymer concrete with fly ash. Second international conference on sustainable construction materials and technologies (Vol. 3, pp. 1493–1504). Ancona: UWM Centre for By-products Utilization.
Google Scholar
Marco, V., Matteo, S., & Abbas, S. (2021). Geopolymers vs. cement matrix materials: How nanofiller can help a sustainability approach for smart. Nanomaterials, 11(8), 2007. https://doi.org/10.3390/nano11082007
Article
Google Scholar
Mehta, P. (2001). Reducing the environmental impact of concrete. Concrete International, 23(10), 61–66.
Google Scholar
Mehta, A., & Siddique, R. (2016). An overview of geopolymers derived from industrial byproducts. Construction and Building Materials, 127(2016), 183–198. https://doi.org/10.1016/j.conbuildmat.2016.09.136
Article
Google Scholar
Mehta, A., & Siddique, R. (2017). Sulfuric acid resistance of fly ash based geopolymer concrete. Construction and Building Materials, 146, 136–143. https://doi.org/10.1016/j.conbuildmat.2017.04.077
Article
Google Scholar
Monfardini, L., Facconi, L., & Minelli, F. (2019). Experimental tests on fiber-reinforced alkali-activated concrete beams under flexure: some considerations on the behavior at ultimate and serviceability conditions. Materials, 12(20), 3356. https://doi.org/10.3390/ma12203356
Article
Google Scholar
Naik, T., & Moriconi, G. (2006). Environmental-friendly durable concrete made with recycled materials for sustainable concrete construction. Milwaukee: University of Wisconsin.
Google Scholar
Naik, T., & Ramme, B. (1987). Setting and hardening of high fly ash content concrete (Vol. 1, pp. 161–1620). Atlanta: Proceedings of the Eighth International Ash Utilization Symposium.
Google Scholar
Nazari, A., & Sanjayan, J. (2015). Hybrid effects of alumina and silica nanoparticles on water absorption of geopolymers: application of Taguchi approach. Measurement, 60, 240–246. https://doi.org/10.1016/j.measurement.2014.10.004
Article
Google Scholar
Nazari, A., Torgal, F., Cevik, A., & Sanjayan, J. (2014). Compressive strength of tungsten mine waste-and metakaolin-based geopolymers. Ceramics International, 40, 6053–6062. https://doi.org/10.1016/j.ceramint.2013.11.055
Article
Google Scholar
Okoye, F., Durgaprasad, J., & Singh, N. (2016). Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceramics International, 42, 3000–3006. https://doi.org/10.1016/j.ceramint.2015.10.084
Article
Google Scholar
Palomo, A., Grutzeck, M., & Blanco, M. (1999). Alkali-activated fly ashes: a cement for the future. Cement and Concrete Research, 29, 1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9
Article
Google Scholar
Parathi, S., Nagarajan, P., & Pallikkara, S. (2021). Ecofriendly geopolymer concrete: a comprehensive review. Clean Technologies and Environmental Policy, 23, 1701–1713. https://doi.org/10.1007/s10098-021-02085-0
Article
Google Scholar
Poojari, Y., & Kampilla, V. (2020). Strength behavior analysis of fiber reinforced fly ash concrete. Materials Today. https://doi.org/10.1016/j.matpr.2020.10.027
Article
Google Scholar
Pop, I., DeSchutter, G., Desnerck, P., & Onet, T. (2013). Bond between powder type self-compacting concrete and steel reinforcement. Construction and Building Materials, 41, 824–833. https://doi.org/10.1016/j.conbuildmat.2012.12.029
Article
Google Scholar
Prachasaree, W., Limkatanyu, S., Hawa, A., & Samakrattakit, A. (2014). Development of equivalent stress block parameters for fly-ash-based geopolymer concrete. Arabian Journal for Science and Engineering, 39(12), 8549–8558. https://doi.org/10.1007/s13369-014-1447-2
Article
Google Scholar
Rajendran, R., Narasimharao, B., Preethi, P., Mohammed, S., Naveen, D., Prem, A., & Pratheba, S. (2021). Strength analysis of geo-polymer concrete based on GGBS/rise husk and p-sand. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.08.126
Article
Google Scholar
Rangan, B. (2008). Fly ash based geopolymer concrete. Research report GC4. Perth: Curtin University of Technology.
Google Scholar
Samantasinghar, S., & Singh, S. (2019). Fresh and hardened properties of fly ash-slag blended geopolymer paste and mortar. International Journal of Concrete Structures and Materials, 13, 47. https://doi.org/10.1186/s40069-019-0360-1
Article
Google Scholar
Sarker, P. (2008). A constitutive model for fly ash-based geopolymer concrete. Architecture Civil Engineering Environment, 1, 113–120.
Google Scholar
Sata, V., Wongsa, A., & Chindaprasirt, P. (2013). Properties of pervious geopolymer concrete using recycled aggregates. Construction and Building Materials, 42, 33–39. https://doi.org/10.1016/j.conbuildmat.2012.12.046
Article
Google Scholar
Shaik, N., Dushyanth, V., Nabil, H., & Mohd, M. (2022). Strength and durability properties of geopolymer paver blocks made with fly ash and brick kiln rice husk ash. Case Studies in Construction Materials, 16, 2214–5095. https://doi.org/10.1016/j.cscm.2021.e00800
Article
Google Scholar
Sharma, A., & Ahmad, J. (2017). Factors affecting compressive strength of geopolymer concrete—a review. International Research Journal of Engineering and Technology, 4, 2026–2031.
Google Scholar
Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. (2015). Geo-polymer concrete: a review of some recent developments. Construction and Building Materials, 85, 78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036
Article
Google Scholar
Sofi, M., VanDeventer, J., Mendis, P., & Lukey, G. (2007a). Engineering properties of inorganic polymer concretes (IPCs). Cement and Concrete Research, 37, 251–257. https://doi.org/10.1016/j.cemconres.2006.10.008
Article
Google Scholar
Sofi, M., VanDeventer, J., Mendis, P., & Lukey, G. (2007b). Bond performance of reinforcing bars in inorganic polymer concrete (IPC). Journal of Materials Science, 42, 3107–3116. https://doi.org/10.1007/s10853-006-0534-5
Article
Google Scholar
Sumajouw, D., & Rangan, B. (2006). Low-calcium fly ash-based geopolymer concrete: Reinforced beams and columns. Research report GC 3. Perth: Curtin University of Technology.
Google Scholar
Sumajouw, D., Hardjito, D., Wallah, S., & Rangan, B. (2005). Behaviour and strength of reinforced fly ash-based geopolymer concrete beams (pp. 11–14). Newcastle: Proceedings of Australian Structural Engineering, Conference.
Google Scholar
Thakkar, S., Dave, U., & Bhatol, D. (2022). Behaviour of ambient cured prestressed and non-prestressed geopolymer concrete beams. Case Studies in Construction Materials. https://doi.org/10.1016/j.cscm.2021.e00798
Article
Google Scholar
Walkley, B., Rees, G., SanNicolas, R., vanDeventer, J., Hanna, J., & Provis, J. (2018). New structural model of sodium aluminosilicate gels and the role of charge balancing extra-framework Al. Journal of Physical Chemistry C, 122, 5673–5685. https://doi.org/10.1021/acs.jpcc.8b00259
Article
Google Scholar
Wanchai, Y. (2014). Application of fly ash-based geopolymer for structural member and repair materials. Advances in Science and Technology, 92, 74–83. https://doi.org/10.4028/www.scientific.net/AST.92.74
Article
Google Scholar
Wu, Y., Xie, S., Zhang, Y., Du, F., & Cheng, C. (2018). Super high strength of geo-polymer with the addition of polyphosphate. Ceramics International, 44, 2578–2583. https://doi.org/10.1016/j.ceramint.2017.11.020
Article
Google Scholar
Yost, J., Radlinska, A., Ernst, S., Salera, M., & Martignetti, N. (2013). Structural behavior of alkali activated fly ash concrete. Part 2: structural testing and experimental findings. Materials and Structures, 46, 449–462. https://doi.org/10.1617/s11527-012-9985-0
Article
Google Scholar