Arnaldsson, A., & Jonsson, H. (2006). A fast and robust algorithm for bader decomposition of charge density. Computational Materials Science, 36, 354.
Article
Google Scholar
Bader, R. F. W. (1990). Atoms in molecules—A quantum teory. Oxford University Press.
Google Scholar
Balonis, M., & Glasser, F. P. (2009). The density of cement phases. Cement and Concrete Research, 39(9), 733.
Article
Google Scholar
Barnes, P., & Bensted, J. (2002). Structure and performance of cements. Boca Raton: CRC Press.
Book
Google Scholar
Bensted, J. (1978). γ-dicalcium silicate and its hydraulicity. Cement and Concrete Research, 8(1), 73.
Article
Google Scholar
Courtial, M., de Noirfontaine, M. N., Dunstetter, F., Gasecki, G., & Signes-Frehel, M. (2003). Polymorphism of tricalcium silicate in Portland cement: A fast visual identification of structure and superstructure. Powder Diffraction, 18(1), 7.
Article
Google Scholar
Cuberos, A. J. M., De la Torre, Á. G., Martín-Sedeño, M. C., Moreno-Real, L., Merlini, M., Ordónez, L. M., & Aranda, M. A. G. (2009). Phase development in conventional and active belite cement pastes by Rietveld analysis and chemical constraints. Cement and Concrete Research, 39(10), 833.
Article
Google Scholar
De la Torre, Á. G., De Vera, R. N., Cuberos, A. J. M., & Aranda, M. A. G. (2008). Crystal structure of low magnesium-content alite: Application to Rietveld quantitative phase analysis. Cement and Concrete Research, 38(11), 1261.
Article
Google Scholar
Durgun, E., Manzano, H., Kumar, P., & Grossman, J. C. (2014). The characterization, stability, and reactivity of synthetic calcium silicate surfaces from first principles. The Journal of Physical Chemistry C, 118(28), 15214.
Article
Google Scholar
Fukuda, K., & Taguchi, H. (1999). Hydration of α′L- and β-dicalcium silicates with identical concentration of phosphorus oxide. Cement and Concrete Research, 29(4), 503.
Article
Google Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., … Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502.
Google Scholar
Harada, T., Ohta, M., & Takagi, S. (1978). Effects of polymorphism of tricalcium silicate on hydration and structural characteristics of hardened paste. Yogyo Kyokai Shi, 86, 195.
Article
Google Scholar
Huang, J., Valenzano, L., Singh, T. V., Pandey, R., & Sant, G. (2014). Influence of (Al, Fe, Mg) impurities on triclinic Ca3SiO5: Interpretations from DFT calculations. Crystal Growth & Design, 14(5), 2158.
Article
Google Scholar
Moon, J., Yoon, S., & Monteiro, P. J. M. (2015). Mechanical properties of jennite: A theoretical and experimental study. Cement and Concrete Research. https://doi.org/10.1016/j.cemconres.2015.02.005
Article
Google Scholar
Myers, R. J., Geng, G., Rodriguez, E. D., da Rosa, P., Kirchheim, A. P., & Monteiro, P. J. M. (2017). Solution chemistry of cubic and orthorhombic tricalcium aluminate hydration. Cement and Concrete Research, 100, 176.
Article
Google Scholar
Plank, J. (2020). On the correct chemical nomenclature of C3S, tricalcium oxy silicate. Cement and Concrete Research, 130, 105957.
Article
Google Scholar
Rejmak, P., Dolado, J. S., Aranda, M. A. G., & Ayuela, A. (2019). First-principles calculations on polymorphs of dicalcium silicate—Belite, a main component of Portland cement. The Journal of Physical Chemistry C, 123(11), 6768.
Article
Google Scholar
Sanville, E., Kenny, S. D., Smith, R., & Henkelman, G. (2007). Improved grid-based algorithm for Bader charge allocation. Journal of Computational Chemistry, 28(5), 899.
Article
Google Scholar
Saritas, K., Ataca, C., & Grossman, J. C. (2015). Predicting electronic structure in tricalcium silicate phases with impurities using first-principles. The Journal of Physical Chemistry C, 119(9), 5074.
Article
Google Scholar
Tang, W., & Sanville, E. (2009). A grid-based bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter, 21, 084204.
Google Scholar
Tao, Y., Zhang, W., Li, N., Wang, F., & Hu, S. (2019). Predicting hydration reactivity of Cu-doped clinker crystals by capturing electronic structure modification. ACS Sustainable Chemistry & Engineering, 7(6), 6412.
Article
Google Scholar
Taylor, H. F. (1997). Cement chemistry. Thomas Telford.
Book
Google Scholar
Wang, H., Leon, D., & Farzam, H. (2014b). C4 AF Reactivity—Chemistry and hydration of industrial cement. ACI Materials Journal, 111, 51686504.
Article
Google Scholar
Wang, Q., Li, F., Shen, X., Shi, W., Li, X., Guo, Y., Xiong, S., & Zhu, Q. (2014a). Relation between reactivity and electronic structure for α′L-, β- and γ-dicalcium silicate: A first-principles study. Cement and Concrete Research, 57, 28.
Article
Google Scholar
Wang, Q., Manzano, H., López-Arbeloa, I., & Shen, X. (2018). Water adsorption on the β-dicalcium silicate surface from DFT simulations. Minerals, 8, 386.
Article
Google Scholar
Yu, M., & Trinkle, D. (2011). Accurate and efficient algorithm for Bader charge integration. The Journal of Chemical Physics, 134, 064111.
Article
Google Scholar