Akcay, B., & Tasdemir, M. A. (2010). Effects of distribution of lightweight aggregates on internal curing of concrete. Cement & Concrete Composites,32, 611–616.
Article
Google Scholar
Alexander, M., & Mindess, S. (2005). Aggregates in concrete. Colchester, UK: Taylor & Francis.
Assmann A. (2013). Physical properties of concrete modified with superabsorbent polymers. PhD Tesis, Sttutgart University, Stuttgart, Germany.
ASTM C 16089-05. (2005). Test method for the chemical shrinkage of hydraulic cement paste. West Conshohocken, PA: ASTM International.
ASTM C305-99. (1999). Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency. West Conshohocken, PA: ASTM International.
ASTM C 778-05. (2005). Standard specification for standard sand. West Conshohocken, PA: ASTM International.
Bentur, A. (2000). Early age cracking in cementitious systems. In V. Baroghel-Bouny & P. C. Aitcin (Eds.), Shrinkage of concrete—Shrinkage 2000 (pp. 1–20). Lausanne, Switzerland: RILEM Publications PRO17.
Bentur, A., Igarashi, S., & Kovler, K. (2001). Prevention on autogenous shrinkage in high strength concrete by internal curing using lightweight aggregates. Cement and Concrete Research,31, 1587–1591.
Article
Google Scholar
Bentur A., & van Breugel K. (2002). Internally cured concretes. In: A. Bentur Ed., Early age cracking in cementitious systems (pp. 295–306). Report of the RILEM Technical Committee 181-EAS.
Bentz, D. P., & Jensen, O. M. (2004). Mitigation strategies for autogenous shrinkage cracking. Cement & Concrete Composites,26(6), 677–685.
Article
Google Scholar
Bentz, D. P., Lura, P., & Roberts, J. W. (2005). Mixture proportioning for internal curing. Concrete International,27(2), 35–40.
Google Scholar
Bentz, D. P., & Snyder, K. A. (2009). Protected paste volume in concrete. Extension to internal curing using lightweight fine aggregate. Cement and Concrete Research,29, 1863–1867.
Article
Google Scholar
Castro, J., Keiser, L., Golias, M., & Weiss, J. (2011). Absorption and desorption properties of fine lightweight aggregate for application to internally cured concrete mixtures. Cement & Concrete Composites,33, 1001–1008.
Article
Google Scholar
Craeye, B., Geirnaer, M., & De Schutter, G. (2011). Superabsorbing polymers as an internal curing agent for mitigation of early-ae cracking of high-performance concrete bridge decks. Construction and Building Materials,25, 1–13.
Article
Google Scholar
Cusson, D., & Hoogeven, T. (2008). Internal curing of high-performance concrete with pre-soaked fine lightweight aggregate for prevention of autogenous shrinkage cracking. Cement and Concrete Research,38, 757–765.
Article
Google Scholar
Friedemann, K., Stallmach, F., & Karger, J. (2006). NMR diffusion and relaxation studies during cement hydration—A non destructive approach for clarification of the mechanism of internal post curing of cementitious materials. Cement and Concrete Research,36, 817–826.
Article
Google Scholar
Hammer T. A. (1992). High strength LWA concrete with silica fume—Effect of water content in the LWA on mechanical properties. In Supplementary papers of the 4th CANMET/ACI international conference on fly ash, silica fume, slag and natural pozzolans in concrete (pp. 314–330). Istanbul, Turkey.
Hoa L., & Hooton R. D. (2005). Effects of internal curing methods on restrained shrinkage and permeability. In Proceedings of the 4th international seminar on self-desiccation and its importance in concrete technology (pp. 210–228). Lund, Sweden: Lund University.
Holt, E. (2005). Contribution of mixture design to chemical and autogenous shrinkage of concrete at early ages. Cement and Concrete Research,35, 464–472.
Article
Google Scholar
Japan Concrete Institute. (1998). Report of JCI Committee on autogenous shrinkage of concrete. In Proceedings of international workshop on autogenous shrinkage of concrete (pp. 5–28). Hiroshima, Japan: JCI.
Jensen O. M. (2005). Autogenous phenomena in cement-based materials. Doctor of Science thesis, Department of Building Technology and Structural Engineering, Aalborg University, Aalborg, Denmark.
Jensen, O. M., & Hansen, P. F. (1993). Autogenous deformation and change of the relative humidity in silica fume modified cement paste. ACI Materials Journal,93, 539–543.
Google Scholar
Jensen, O. M., & Hansen, P. F. (1995). A dilatometer for measuring autogenous deformation in hardening Portland cement paste. Materials and Structures,28, 406–409.
Article
Google Scholar
Jensen, O. M., & Hansen, P. F. (1999). Influence of temperature on autogenous deformation and RH-change in hardening cemente paste. Cement and Concrete Research,29, 567–575.
Article
Google Scholar
Jensen, O. M., & Hansen, P. F. (2001). Water-entrained cement-based materials—I. Principles and theoretical background. Cement and Concrete Research,31, 647–654.
Article
Google Scholar
Jensen, O. M., & Hansen, P. F. (2002). Water-entrained cement-based materials—II. Experimental observations. Cement and Concrete Research,32, 973–978.
Article
Google Scholar
Kohler K., & Jensen O. M. (2007). Internal curing of concrete, state-of-the-art Report of RILEM Technical Committee 196-ICC. RILEM Publications S.A.R.L., RILEM REPORT 41, Lausanne, Switzerland.
Lura P. (2003). Autogenous deformation and internal curing of concrete. PhD Thesis, Delft University of Technology, Delft, Netherlands.
Lura P., Bentz D.P., Lange D.A., Koules K., & Bentur A. (2004). Pumice aggregate for internal water curing. In Concrete science and engineering: A tribute to Arnon Bentur (pp. 137–151). Bagneaux, France: RILEM Publications PRO36.
Lura P., Bentz D. P., Lange D. A., Kovler K., & Bentur A. (2004). Pumice aggregates for internal water curing. In: Proceedings of the international RILEM symposium on concrete science and engineering (pp. 137–151). Lausanne, Switzerland: RILEM Publications PRO36.
Lura P., & van Breugel K. (2000). Moisture exchange as a basic phenomenon to understand the volume changes of lightweight aggregate concrete at early age. In Shrinkage of concrete–shrinkage 2000, RILEM (pp. 533–546). Lausanne, Switzerland: Publications PRO17.
Mechtcherine V., & Reinhardt H.W.(2012). Application of superarbsorbent polymers (SAP). In Concrete Construction. State of the Art Report prepared by RILEM Technical Committee 225-SAP. Berlin, Germany: Springer.
Monning S. (2009). Superabsorbing additions in concrete- applications, modeling and comparison of different water sources. PhD Thesis, University of Stuttgart, Stuttgart, Germany.
Nestle, N., Kuhn, A., Friedemann, K., Horch, C., Stallmach, F., & Herth, G. (2009). Water balance and pore structure development in cementitious materials in internal curing with modified superabsorbent polymer studied by NMR. Microporous and Mesoporous Materials,29, 51–57.
Article
Google Scholar
Philleo, R. (1999). Concrete science and reality. In J. P. Skalny & S. Mindess (Eds.), Materials Science of Concrete II (pp. 1–8). Westerville, OH: American Ceramic Society.
Pierard J., Pollet V., & Cauberg N. (2006). Mitigating autogenous shrinkage in HPC by internal curing using superabsorbent polymers. In Volume changes of hardening concrete: testing and mitigation (pp. 97–106). Bagneux, France: RILEM Publication PRO52.
Sahmaran, M., Lachemi, M., Hossain, K. M., & Li, V. C. (2009). Internal curing of engineered cementitious composites for prevention of early age autogenous shrinkage cracking. Cement and Concrete Research,39, 893–901.
Article
Google Scholar
Schröfl, C., Mechtcherine, V., & Gorges, M. (2012). Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage. Cement and Concrete Research,42, 865–873.
Article
Google Scholar
Takada K., van Breugel K., Koenders E. A. B., & Kaptijn N. (1998). Experimental evaluation on autogenous shrinkage of lightweight aggregate concrete. In: Proceedings of international workshop on autogenous shrinkage of concrete (pp. 221–230). Hiroshima, Japan: JCI.
Vaysburd, A. M. (1996). Durability of lightweight concrete bridges in severe environments. Concrete International,18, 33–38.
Google Scholar
Weber S., & Reinhardt H. W. (1996). A blend of aggregates to support curing of concrete. In Proceedings of international symposium on structural lightweight concrete (pp. 662–671). Sandefjord, Norway.
Weber, S., & Reinhardt, H. W. (1997). A new generation of high performance concrete: concrete with autogenous curing. Advanced Cement Based Materials,6, 59–68.
Article
Google Scholar
Zhutovsky, S., Koler, K., & Bentur, A. (2002a). Influence of wet lightweight aggregate on mechanical properties of concrete at early ages. Materials and Structures,35, 97–101.
Article
Google Scholar
Zhutovsky S., Kovler K., & Bentur A. (2002b). Efficiency of lightweight aggregates for internal curing of high strength concrete to eliminate autogenous shrinkage. In Early age cracking in cementitious systems, report of the RILEM Technical Committee 181-EAS (pp. 365–374). Lausanne, Switzerland.