Ali, A. M., Farid, B., & Al-Janabi, A. I. M. (1990). Stress–strain relationship for concrete in compression model of local materials. *Journal of King Abdulaziz University: Engineering Sciences,**2*, 183–194.

Article
Google Scholar

Assié, S. (2004). *Durability of self compacting**concretes* (254 pp). PhD Thesis, INSA-Toulouse, Toulouse (in French).

Baalbaki, W., Benmokrane, B., Chaallal, O., & Aitcin, P.-C. (1991). Influence of coarse aggregate on elastic properties of high-performance concrete. *ACI Materials Journal,**88*(5), 499–503.

Google Scholar

Belén, G.-F., Fernando, M.-A., Carro Lopez, D., & Seara-Paz, S. (2011). Stress–strain relationship in axial compression for concrete using recycled saturated coarse aggregate. *Construction and Building Materials,**25*(5), 2335–2342.

Article
Google Scholar

Belin, P., Habert, G., Thiery, M., & Thiery, M. (2013). Cement paste content and water absorption of recycled concrete coarse aggregates. *Materials and Structures*, 1–15. doi: 10.1617/s11527-013-0128-z.

Carreira, D. J., & Chu, K.-H. (1985). Stress–strain relationship for plain concrete in compression. *ACI Materials Journal,**82*(6), 797–804.

Google Scholar

Casuccio, M., Torrijos, M.-C., Giaccio, G., & Zerbino, R. (2008). Failure mechanism of recycled aggregate concrete. *Construction and Building Materials,**22*(7), 1500–1506.

Article
Google Scholar

Cedolin, L., & Cusatis, G. (2008). Identification of concrete fracture parameters through size effect experiments. *Cement & Concrete Composites,**30*(9), 788–797.

Article
Google Scholar

de Juan, M.-S., & Gutirrez, P.-A. (2009). Study on the influence of attached mortar content on the properties of recycled concrete aggregate. *Construction and Building Materials,**23*(2), 872–877.

Article
Google Scholar

Dhonde, H.-B., Mo, Y.-L., Hsu, T. T.-C., & Vogel, J. (2007). Fresh and hardened properties of self-consolidating fiber-reinforced concrete. *ACI Journal,**104*(5), 491–500.

Google Scholar

Djerbi Tegguer, A. (2012). Determining the water absorption of recycled aggregates utilizing hydrostatic weighing approach. *Construction and Building Materials,**27*(1), 112–116.

Article
Google Scholar

Domingo-Cabo, A., Lazaro, C., Lopez-Gayarre, F., Serrano-Lopez, M. A., Serna, P., & Castano-Tabares, J. O. (2009). Creep and shrinkage of recycled aggregate concrete. *Construction and Building Materials,**23*(7), 2545–2553.

Article
Google Scholar

Dong, Z., & Keru, W. (2001). Fracture properties of high-strength concrete. *Journal of Materials in Civil Engineering,**13*(1), 86–88.

Article
Google Scholar

El-Hilali, A. (2009). *Experimental study of the rheology and the behaviour and self-compacting concrete (SCC): Influence of limestone filler and vegetable fibres* (p. 200). PhD Thesis, University of Cergy-Pontoise (in French).

Etxeberria, M., Vazquez, E., Mari, A., & Barra, M. (2007). Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. *Cement and Concrete Research,**37*(5), 735–742.

Article
Google Scholar

Evangelista, L., & de Brito, J. (2007). Mechanical behaviour of concrete made with fine recycled concrete aggregates. *Cement & Concrete Composites,**29*(5), 397–401.

Article
Google Scholar

Fares, H. (2009). *Mechanical and physico-chemical properties of self compacting concrete exposed to heigh temperatures* (p. 206). PhD Thesis, University of Cergy-Pontoise (in French).

Gesoglu, M., Güneyisi, E., & Özturan, T. (2002). Effects of end conditions on compressive strength and static elastic modulus of very high strength concrete. *Cement and Concrete Research,**32*(10), 1545–1550.

Article
Google Scholar

Gomes, M. & de Brito, J. (2009). Structural concrete with incorporation of coarse recycled concrete and ceramic aggregates: durability performance. *Materials and Structures, 42*(5), 663–675. doi:10.1617/s11527-008-9411-9).

Gomez-Soberon, J. M. V. (2002). Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study. *Cement and Concrete Research,**32*(8), 1301–1311.

Article
Google Scholar

Hacene, S.-M.-A. B., Ghomari, F., Schoefs, F., & Khelidj, A. (2009). Etude expérimentale et statistique de l’influence de l’affaissement et de l’air occlus sur la résistance a la compression des bétons. *Lebanese Science Journal,**10*(2), 81–100.

Google Scholar

Hansen, T. C., & Boegh, E. (1986). Elasticity and drying shrinkage of recycled aggregate concrete. *ACI Journal,**82*(5), 648–652.

Google Scholar

Julio, E., Dias, N., Lourenço, J., & Silva, J. (2006). Feret coefficients for white self-compacting concrete. *Materials and Structures, 39*(5), 585–591. doi:10.1007/s11527-005-9048-x.

Kang, T. H.-K., Kim, W., Kwak, Y.-K., & Hong, S.-G. (2014). Flexural testing of reinforced concrete beams with recycled concrete aggregates. *ACI Structural Journal*, *111*(3), 607–616.

Karihaloo, B.-L., Abdalla, H.-M., & Xiao, Q.-Z. (2006). Deterministic size effect in the strength of cracked concrete structures. *Cement and Concrete Research,**36*(1), 171–188.

Article
Google Scholar

Kim, J.-K., Lee, C.-S., Park, C.-K., & Eo, S.-H. (1997). The fracture characteristics of crushed limestone sand concrete. *Cement and Concrete Research,**27*(11), 1719–1729.

Article
Google Scholar

Kim, J.-K., Lee, Y., & Yi, S.-T. (2004). Fracture characteristics of concrete at early ages. *Cement and Concrete Research,**34*(3), 507–519.

Article
Google Scholar

Kou, S.-C., Poon, C.-S., & Etxeberria, M. (2011). Influence of recycled aggregates on long term mechanical properties and pore size distribution of concrete. *Cement & Concrete Composites,**33*(2), 286–291.

Article
Google Scholar

Lédée, M. V., de Larrard F., Sedran, T., & Brochu, F.-P. (2004). *Essai de compacité des fractions granulaires à la table à secousses—Mode opératoire*. M. d. e. no. 61 (p. 13). Paris, France Laboratoire Central des Ponts et Chaussées (in French).

Li, X. (2008). Recycling and reuse of waste concrete in China: Part I. Material behaviour of recycled aggregate concrete. *Resources, Conservation and Recycling 53*(1–2), 36–44.

Manzi, S., Mazzotti, C., & Bignozzi, M. C. (2013). Short and long-term behavior of structural concrete with recycled concrete aggregate. *Cement & Concrete Composites,**37*, 312–318.

Article
Google Scholar

Martinez-Lage, I., Martinez-Abella, F., Vazquez-Herrero, C., & Perez-Ordonez, J.-L. (2012). Properties of plain concrete made with mixed recycled coarse aggregate. *Construction and Building Materials, Non Destructive Techniques for Assessment of Concrete,**37*, 171–176.

Article
Google Scholar

McNeil, K. & Kang T.-K. (2013). Recycled concrete aggregates: A review. *International Journal of Concrete Structures and Materials, 7*(1), 61–69 doi:10.1007/s40069-013-0032-5).

Pereira, P., Evangelista, L., & de Brito, J. (2012). The effect of superplasticisers on the workability and compressive strength of concrete made with fine recycled concrete aggregates. *Construction and Building Materials,**28*(1), 722–729.

Article
Google Scholar

Poon, C.-S., Kou S.-C., & Lam, L. (2007). Influence of recycled aggregate on slump and bleeding of fresh concrete. *Materials and Structures, 40*(9), 981–988. doi:10.1617/s11527-006-9192-y.

Prasad, M. L. V., Rathish Kumar, P., & Oshima, T. (2009). Development of analytical stress–strain model for glass fiber self compacting concrete. *International Journal of Mechanics and Solids,**4*(1), 25–37.

Google Scholar

Praveen, K., Haq, M.-A., & Kaushik, S.-K. (2004). Early age strength of SCC with large volumes of fly ash. *Indian concrete Journal,**78*(6), 25–29.

Google Scholar

Sedran, T. (1999). *Rhéologie et Rhéométrie des bétons: Application aux bétons autonivelants* (p. 220). Champs-sur-Marne: Ecole nationale des Ponts et Chaussées.

Shannag, M. J. (2000). High strength concrete containing natural pozzolan and silica fume. *Cement & Concrete Composites,**22*(6), 399–406.

Article
Google Scholar

Shen, J., Yurtdas, I. Diagana, G., & Li, A. (2009). Evolution of the uniaxial mechanical behavior of self-compacting concrete (SCC): Effect of the compressive strength. In *27th meeting of civil engineering universities*, St. Malo, France.

Suresh Babu, T., Seshagiri Rao, M. V., & Rama Seshu, D. (2008). Mechanical properties and stress–strain behavior of self compacting concrete with and without glass fibres. *Asian Journal of Civil Engineering (Building and Housing),**9*(5), 457–472.

Google Scholar

Tam, V. W.-Y., Gao, X. F., Tam, C. M., & Chan, C. H. (2008). New approach in measuring water absorption of recycled aggregates. *Construction and Building Materials,**22*(3), 364–369.

Article
Google Scholar

UNICEM L’Union nationale des industries de carrières et matériaux de construction. Reteieved, from http://www.unicem.fr/. Accessed 2013.

UNPG Union Nationale des Producteurs de Granulats. Reteieved, from http://www.unpg.fr/. Accessed 2013.

Wardeh, G., Ghorbel, E., & Mignot, V. (2010). *Fracture properties of hybrid fibre self compacting concrete* (pp. 219–224). Marianske Lazne: Concrete structures for challenging times.

Google Scholar

Wee, T., Chin, M., & Mansur, M. (1996). Stress–strain relationship of high-strength concrete in compression. *Journal of Materials in Civil Engineering,**8*(2), 70–76.

Article
Google Scholar

Wu, K.-R., Chen, B., Yao, W., & Zhang, D. (2001). Effect of coarse aggregate type on mechanical properties of high-performance concrete. *Cement and Concrete Research,**31*(10), 1421–1425.

Article
Google Scholar

Xiao, J., Li, J., & Zhang, C. (2005). Mechanical properties of recycled aggregate concrete under uniaxial loading. *Cement and Concrete Research,**35*(6), 1187–1194.

Article
Google Scholar

Xiao, J., Sun, Y., & Falkner, H. (2006). Seismic performance of frame structures with recycled aggregate concrete. *Engineering Structures,**28*(1), 1–8.

Article
Google Scholar

Zhao, Z., Kwon, S.-H., & Shah, S.-P. (2008). Effect of specimen size on fracture energy and softening curve of concrete: Part I. Experiments and fracture energy. *Cement and Concrete Research,**38*(8–9), 1049–1060.

Article
Google Scholar