American Concrete Institute, ACI 522R-10. Report on pervious concrete. ACI Committee 522 2010.
American Society for Testing and Materials, ASTM C39. (2012). Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM International.
Google Scholar
Bakharev, T., Sanjayan, J. G., & Cheng, Y.-B. (2001). Resistance of alkali-activated slag concrete to carbonation. Cement and Concrete Research,
31, 1277–1283.
Article
Google Scholar
Bernal, S. A., Nicolas, R., Provis, J. L., De Gutierrez, R. M., & van Deventer, J. S. (2014). Natural carbonation of aged alkali-activated slag concretes. Materials and Structures,
47, 693–707.
Article
Google Scholar
Bertos, M. F., Simons, S. J. R., Hills, C. D., & Carey, P. J. (2004). A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. Journal of Hazardous Materials,
112(2), 193–205.
Google Scholar
Bhutta, M. A. R., Hasanah, N., Farhayu, N., Hussin, M. W., Tahir, M. B. M., & Mirza, J. (2013). Properties of porous concrete from waste crushed concrete (recycled aggregate). Construction and Building Materials,
47, 1243–1248.
Article
Google Scholar
Bhutta, M. A. R., Tsuruta, K., & Mirza, J. (2012). Evaluation of high-performance porous concrete properties. Construction and Building Materials,
31, 67–73.
Article
Google Scholar
Bochenczyk, A. U. (2010). Mineral sequestration of CO2 in suspensions containing mixtures of fly ashes and desulphurization waste. Gosposarka Surowcami Mineralnymi,
26, 109–118.
Google Scholar
Chi, M.C., Chang, J.J., & Huang, R. (2012). Strength and drying shrinkage of alkali-activated slag paste and mortar. Advances in Civil Engineering, 2012.
Deja, J. (2002). Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders. Cement and Concrete Research,
32, 1971–1979.
Article
Google Scholar
Dermatas, D., & Meng, X. (2003). Utilization of fly ash for stabilization/solidification of heavy metal contaminated soil. Engineering Geology,
70, 337–394.
Article
Google Scholar
Edwards, H. G., Currie, K. J., Ali, H. R., Villar, S. E. J., David, A. R., & Denton, J. (2007). Raman spectroscopy of natron: shedding light on ancient Egyptian mummification. Analytical and Bioanalytical Chemistry,
388(3), 683–689.
Article
Google Scholar
Ekmekyapar, A., Ersahan, H., & Yapici, S. (1996). Nonisothermal decomposition kinetics of trona. Industrial and Engineering Chemistry Research,
35, 258–262.
Article
Google Scholar
Eloneva, S., Teir, S., Salminen, J., Fogelholm, C. J., & Zevenhoven, R. (2008). Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy,
33, 1461–1467.
Article
Google Scholar
Environment, Health and Safety Online. (2008). The EPA TCLP: Toxicity characteristic leaching procedure and characteristic wastes (D-codes). Environment, Health and Safety Online.
Fleischer, M., Sarofim, A. F., Fassett, D. W., Hammond, P., Shacklette, H. T., Nisbet, I. C., & Epstein, S. (1974). Environmental impact of cadmium: a review by the Panel on Hazardous Trace Substances. Environmental Health Perspectives,
7, 253.
Article
Google Scholar
Guo, Q., Qu, J., Qi, T., Wei, G., & Han, B. (2011). Activation pretreatment of limonitic laterite ores by alkali-roasting method using sodium carbonate. Minerals Engineering,
24, 825–832.
Article
Google Scholar
Halim, C. E., Acott, J. A., Natawardaya, H., Amal, R., Beydoun, D., & Low, G. (2004). Comparison between acetic acid and landfill leachates for the leaching of Pb(II), Cd(II), As(V), and Cr(VI) from cementitious wastes. Environmental Science and Technology,
38, 3977–3983.
Article
Google Scholar
Jang, J. G., Ahn, Y. B., Souri, H., & Lee, H. K. (2015a). A novel eco-friendly porous concrete fabricated with coal ash and geopolymeric binder: Heavy metal leaching characteristics and compressive strength. Construction and Building Materials,
79, 173–181.
Article
Google Scholar
Jang, J. G., Kim, H. J., Park, S. M., & Lee, H. K. (2015b). The influence of sodium hydrogen carbonate on the hydration of cement. Construction and Building Materials,
94, 746–749.
Article
Google Scholar
Japanese Standard Association, JIS A 1104. (2006). Methods of test for bulk density of aggregates and solid content in aggregates. JSA
Kar, A., Ray, I., Halabe, U. B., Unnikrishnan, A., & Dawson-Andoh, B. (2014). Characterizations and quantitative estimation of alkali-activated binder paste from microstructures. International Journal of Concrete Structures and Materials,
8, 213–228.
Article
Google Scholar
Kim, H. K., Ha, K. A., Jang, J. G., & Lee, H. K. (2014a). Mechanical and chemical characteristics of bottom ash aggregates cold-bonded with fly ash. Journal of Korean Ceramic Society,
51, 57–63.
Article
Google Scholar
Kim, H. K., Jang, J. G., Choi, Y. C., & Lee, H. K. (2014b). Improved chloride resistance of high-strength concrete amended with coal bottom ash for internal curing. Construction and Building Materials,
71, 334–343.
Article
Google Scholar
Kim, M. S., Jun, Y., Lee, C., & Oh, J. E. (2013). Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cement and Concrete Research,
54, 208–214.
Article
Google Scholar
Kim, H. K., & Lee, H. K. (2010). Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete. Applied Acoustics,
71, 607–615.
Article
Google Scholar
Kuo, W. T., Liu, C. C., & Su, D. S. (2013). Use of washed municipal solid waste incinerator bottom ash in pervious concrete. Cement & Concrete Composites,
37, 328–335.
Article
Google Scholar
Li, X. D., Poon, C. S., Sun, H., Lo, I. M. C., & Kirk, D. W. (2012). Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials. Journal of Hazardous Materials,
82(3), 215–230.
Article
Google Scholar
Lian, C., Zhuge, Y., & Beecham, S. (2011). The relationship between porosity and strength of porous concrete. Construction and Building Materials,
25, 4292–4298.
Article
Google Scholar
NSF International standard/American National Standard, NSF/ANSI 61-2007a. (2007). Drinking water system components—health effects. Oxfordshire: NSF International.
Google Scholar
Park, S. B., & Tia, M. (2004). An experimental study on the water purification properties of porous concrete. Cement and Concrete Research,
34, 177–184.
Article
Google Scholar
Perera, D. S., Aly, Z., Vance, E. R., & Mizumo, M. (2005). Immobilization of Pb in a geopolymer matrix. Journal of the American Ceramic Society,
88, 2586–2588.
Article
Google Scholar
Phoo-ngernkham, T., Maegawa, A., Mishima, N., Hatanaka, S., & Chindaprasirt, P. (2015). Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer. Construction and Building Materials,
91, 1–8.
Article
Google Scholar
Puertas, F., Palacious, M., & Vazquez, T. (2006). Carbonation process of alkali-activated slag mortars. Journal of Materials Science,
41, 3071–3082.
Article
Google Scholar
Qian, G., Sun, D. D., & Tay, J. H. (2003a). Immobilization of mercury and zinc in an alkali-activated slag matrix. Journal of Hazardous Materials,
101(2), 65–77.
Article
Google Scholar
Qian, G., Sun, D. D., & Tay, J. H. (2003b). Characterization of mercury- and zinc-doped alkali-activated slag matrix Part II. Zinc. Cement and Concrete Research,
33, 1257–1262.
Article
Google Scholar
Qian, G., Sun, D. D., & Tay, J. H. (2003c). Characterization of mercury- and zinc-doped alkali-activated slag matrix Part I. Mercury. Cement and Concrete Research,
33, 1251–1256.
Article
Google Scholar
Ravikumar, D., & Neithalath, N. (2013). Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure. Cement and Concrete Research,
47, 31–42.
Article
Google Scholar
Shi, C., & Fernandez-Jimenez, A. (2006). Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. Journal of Hazardous Materials,
137(3), 1656–1663.
Article
Google Scholar
Singh, M., & Siddique, R. (2014). Strength properties and micro-structural properties of concrete containing coal bottom ash as partial replacement of fine aggregate. Construction and Building Materials,
50, 246–256.
Article
Google Scholar
Song, S., & Jennings, H. M. (1999). Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cement and Concrete Research,
29, 159–170.
Article
Google Scholar
Sriravindrarajah, R., Wang, N. D. H., & Ervin, L. J. W. (2012). Mix design for pervious recycled aggregate concrete. International Journal of Concrete Structures and Materials,
6(4), 239–246.
Article
Google Scholar
Vandecasteele, C., Dutre, V., Geysen, D., & Wauters, G. (2002). Solidification/stabilization of arsenic bearing fly ash from the metallurgical industry. Immobilization mechanism of arsenic. Waste Management,
22(2), 143–146.
Article
Google Scholar
Wang, S. D., & Scrivener, K. L. (1995). Hydration products of alkali activated slag cement. Cement and Concrete Research,
25, 561–571.
Article
Google Scholar
Ylmén, R., & Jäglid, U. (2013). Carbonation of Portland cement studied by diffuse reflection fourier transform infrared spectroscopy. International Journal of Concrete Structures and Materials,
7, 119–125.
Article
Google Scholar
Zhang, J., Provis, J. L., Feng, D., & van Deventer, J. S. J. (2008). Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+. Journal of Hazardous Materials,
157, 587–598.
Article
Google Scholar
Zhang, Y., Sun, W., Chen, Q., & Chen, L. (2007). Synthesis and heavy metal immobilization behaviors of slag based geopolymer. Journal of Hazardous Materials,
143, 206–213.
Article
Google Scholar