Akchurin, T. K., Tukhareli, A. V., & Cherednichenko, T. F. (2016). Effective concrete modified by complex additive based on waste products of construction acrylic paints. 2nd International Conference on Industrial Engineering (Icie-2016), 150, 1468–1473. https://doi.org/10.1016/j.proeng.2016.07.083
Al-Adili, A., Al-Ameer, O. A., & Raheem, E. (2015). Investigation of incorporation of two waste admixtures effect on some properties of concrete. International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability—TMREES, 15(74), 652–662. https://doi.org/10.1016/j.egypro.2015.07.801
Article
Google Scholar
Al-Ansary, M. S., El-Haggar, S. M., & Taha, M. A. (2004). Sustainable guidelines for managing demolition waste in Egypt. Paper presented at the proceedings of the international RILEM conference on the use of recycled materials in building and structures, Barcelona.
Alnahhal, A. M., Alengaram, U. J., Yusoff, S., Singh, R., Radwan, M. K. H., & Deboucha, W. (2021). Synthesis of sustainable lightweight foamed concrete using palm oil fuel ash as a cement replacement material. Journal of Building Engineering, 35, 102047. https://doi.org/10.1016/j.jobe.2020.102047
Article
Google Scholar
Alqarni, A. S., Albidah, A. S., Alaskar, A. M., & Abadel, A. A. (2020). The effect of coarse aggregate characteristics on the shear behavior of reinforced concrete slender beams. Construction and Building Materials, 264, 120189.
Article
Google Scholar
Anitha Selvsofia, S. D., Dinesh, A., & Babu, S. (2021). Investigation of waste marble powder in the development of sustainable concrete. Materials Today: Proceedings, 44, 4223–4226.
Google Scholar
Assi, L., Carter, K., Deaver, E., Anay, R., & Ziehl, P. (2018). Sustainable concrete: Building a greener future. Journal of Cleaner Production, 198, 1641–1651. https://doi.org/10.1016/j.jclepro.2018.07.123
Article
Google Scholar
ASTM Committee C-09 on Concrete Aggregates. (2013). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM international.
Google Scholar
Babor, D., Plian, D., & Judele, L. (2009). Environmental impact of concrete. Buletinul Institutului Politehnic Din Lasi. Sectia Constructii, Arhitectura, 55(4), 27.
Google Scholar
Baeza-Brotons, F., Garces, P., Paya, J., & Saval, J. M. (2014). Portland cement systems with addition of sewage sludge ash. Application in concretes for the manufacture of blocks. Journal of Cleaner Production, 82, 112–124. https://doi.org/10.1016/j.jclepro.2014.06.072
Article
Google Scholar
Bajare, D., Bumanis, G., & Upeniece, L. (2013). Coal combustion bottom ash as microfiller with pozzolanic properties for traditional concrete. Modern Building Materials, Structures and Techniques, 57, 149–158. https://doi.org/10.1016/j.proeng.2013.04.022
Article
Google Scholar
Balasubramaniam, T., & Stephen, S. J. (2022). Influence of industrial wastes on the mechanical and durability characteristics of high strength concrete. Construction and Building Materials, 317, 126202.
Article
Google Scholar
Barros, J. A., Ferrara, L., & Martinelli, E. (2017). Recent advances on green concrete for structural purposes. The Contribution of the Eu-fp7 Project Encore. https://doi.org/10.1007/978-3-319-56797-6
Article
Google Scholar
Benazzouk, A., Douzane, O., Langlet, T., Mezreb, K., Roucoult, J. M., & Queneudec, M. (2007). Physico-mechanical properties and water absorption of cement composite containing shredded rubber wastes. Cement & Concrete Composites, 29(10), 732–740. https://doi.org/10.1016/j.cemconcomp.2007.07.001
Article
Google Scholar
Brekailo, F., Pereira, E., Pereira, E., Farias, M. M., & Medeiros-Junior, R. A. (2022). Red ceramic and concrete waste as replacement of Portland cement: Microstructure aspect of eco-mortar in external sulfate attack. Cleaner Materials, 3, 100034.
Article
Google Scholar
British Standards Institution. (2006). Concrete--complementary British Standard to BS EN 206-1: Specification for constituent materials and concrete. BSI.
Caldas-Vieira, F., Feuerborn, H.-J., & Saraber, A. (2013). European product standards-update on status and changes with relevance to CCPs. Paper presented at the world of coal ash (WOCA) conference. Lexington, KY, USA.
Cerny, V., Kocianova, M., & Drochytka, R. (2017). Possibilities of lightweight high strength concrete production from sintered fly ash aggregate. 18th International Conference on Rehabilitation and Reconstruction of Buildings (Crrb), 195, 9–16. https://doi.org/10.1016/j.proeng.2017.04.517
Chabi, E., Lecomte, A., Adjovi, E. C., Dieye, A., & Merlin, A. (2018). Mix design method for plant aggregates concrete: Example of the rice husk. Construction and Building Materials, 174, 233–243. https://doi.org/10.1016/j.conbuildmat.2018.04.097
Article
Google Scholar
Chaitanya, M., & Ramakrishna, G. (2021). Enhancing the mechanical properties of pervious recycled aggregate concrete using silica fumes. Materials Today: Proceedings, 46, 634–637. https://doi.org/10.1016/j.matpr.2020.11.549
Article
Google Scholar
Chowdhury, S., Mishra, M., & Suganya, O. (2015). The incorporation of wood waste ash as a partial cement replacement material for making structural grade concrete: An overview. Ain Shams Engineering Journal, 6(2), 429–437. https://doi.org/10.1016/j.asej.2014.11.005
Article
Google Scholar
Dash, M. K., Patro, S. K., & Rath, A. K. (2016). Sustainable use of industrial-waste as partial replacement of fine aggregate for preparation of concrete—A review. International Journal of Sustainable Built Environment, 5(2), 484–516.
Article
Google Scholar
Devi, S. V., Gausikan, R., Chithambaranathan, S., & Jeffrey, J. W. (2021). Utilization of recycled aggregate of construction and demolition waste as a sustainable material. Materials Today: Proceedings, 45, 6649–6654. https://doi.org/10.1016/j.matpr.2020.12.013
Article
Google Scholar
Devi, V. S., Kumar, M. M., Iswarya, N., & Gnanavel, B. K. (2020). Durability of steel slag concrete under various exposure conditions. Materials Today: Proceedings, 22, 2764–2771.
Google Scholar
Dharmaraj, R. (2021). Experimental study on strength and durability properties of iron scrap with flyash based concrete. Materials Today: Proceedings, 37, 1041–1045. https://doi.org/10.1016/j.matpr.2020.06.290
Article
Google Scholar
Deutsches Institut für Normung (DIN). (2002). DIN 4226-100: 2002-2: Aggregates for mortar and concrete. Part 100: recycled aggregates.
Dixit, A. (2021). A study on the physical and chemical parameters of industrial by-products ashes useful in making sustainable concrete. Materials Today: Proceedings, 43, 42–50. https://doi.org/10.1016/j.matpr.2020.11.203
Article
Google Scholar
Febin, G. K., Abhirami, A., Vineetha, A. K., Manisha, V., Ramkrishnan, R., Sathyan, D., & Mini, K. M. (2019). Strength and durability properties of quarry dust powder incorporated concrete blocks. Construction and Building Materials, 228, 116793. https://doi.org/10.1016/j.conbuildmat.2019.116793
Article
Google Scholar
Gadag, P. R., Ghorpade, V. G., & Rao, H. S. (2022). Evaluation of strength parameters of ultra-fine flyash and nanosilica incorporated high-performance concrete. Materials Today: Proceedings, 49, 2288–2296.
Google Scholar
Ganjian, E., Khorami, M., & Maghsoudi, A. A. (2009). Scrap-tyre-rubber replacement for aggregate and filler in concrete. Construction and Building Materials, 23(5), 1828–1836. https://doi.org/10.1016/j.conbuildmat.2008.09.020
Article
Google Scholar
Gholampour, A., & Ozbakkaloglu, T. (2017). Performance of sustainable concretes containing very high volume Class-F fly ash and ground granulated blast furnace slag. Journal of Cleaner Production, 162, 1407–1417. https://doi.org/10.1016/j.jclepro.2017.06.087
Article
Google Scholar
Golewski, G. L. (2017). Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure. Materials Characterization, 134, 335–346. https://doi.org/10.1016/j.matchar.2017.11.008
Article
Google Scholar
Guo, P. W., Meng, W. N., Nassif, H., Gou, H. Y., & Bao, Y. (2020). New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure. Construction and Building Materials, 257, 119579. https://doi.org/10.1016/j.conbuildmat.2020.119579
Article
Google Scholar
Hamada, H. M., Jokhio, G. A., Yahaya, F. M., Humada, A. M., & Gul, Y. (2018). The present state of the use of palm oil fuel ash (POFA) in concrete. Construction and Building Materials, 175, 26–40. https://doi.org/10.1016/j.conbuildmat.2018.03.227
Article
Google Scholar
Hanjitsuwan, S., Phoo-ngernkham, T., Li, L. Y., Damrongwiriyanupap, N., & Chindaprasirt, P. (2018). Strength development and durability of alkali-activated fly ash mortar with calcium carbide residue as additive. Construction and Building Materials, 162, 714–723. https://doi.org/10.1016/j.conbuildmat.2017.12.034
Article
Google Scholar
Hasan, M. F., Hassan, M. A., & Lateef, K. H. (2021). Effect of MK and SF on the concrete mechanical properties. Materials Today: Proceedings, 42, 2914–2919. https://doi.org/10.1016/j.matpr.2020.12.751
Article
Google Scholar
Hassanein, O. F., & Ezeldin, A. S. (2013). Concrete recycling in Egypt for construction applications: A technical and financial feasibility model. International Journal of Mechanical and Industrial Engineering, 7(12), 902–907.
Google Scholar
Hendi, A., Behravan, A., Mostofinejad, D., Sedaghatdoost, A., & Amini, M. (2018). A step towards green concrete: Effect of waste silica powder usage under HCl attack. Journal of Cleaner Production, 188, 278–289. https://doi.org/10.1016/j.jclepro.2018.03.288
Article
Google Scholar
Il’ina, L., & Mukhina, I. (2016). Estimation of the applicability for the filler produced by recycling of concrete and reinforced concrete used in heavy concrete. Procedia Engineering, 150, 1525–1530.
Article
Google Scholar
Indian Standard 10262. (2009). Concrete mix proportioning-guidelines. Indian Standard Code.
Iqbal, M. F., Javed, M. F., Rauf, M., Azim, I., Ashraf, M., Yang, J., & Liu, Q. F. (2021). Sustainable utilization of foundry waste: Forecasting mechanical properties of foundry sand based concrete using multi-expression programming. Science of the Total Environment, 780, 146524. https://doi.org/10.1016/j.scitotenv.2021.146524
Article
Google Scholar
Ismail, Z. Z., & Al-Hashmi, E. A. (2008). Reuse of waste iron as a partial replacement of sand in concrete. Waste Management, 28(11), 2048–2053. https://doi.org/10.1016/j.wasman.2007.07.009
Article
Google Scholar
Jiang, Y., Ling, T. C., Shi, C. J., & Pan, S. Y. (2018). Characteristics of steel slags and their use in cement and concrete—A review. Resources Conservation and Recycling, 136, 187–197. https://doi.org/10.1016/j.resconrec.2018.04.023
Article
Google Scholar
Kabir, S., Al-Shayeb, A., & Khan, I. M. (2016). Recycled construction debris as concrete aggregate for sustainable construction materials. ICSDEC 2016—Integrating Data Science Construction and Sustainability, 145, 1518–1525. https://doi.org/10.1016/j.proeng.2016.04.191
Article
Google Scholar
Kavitha, O. R., Shyamala, G., & Akshana, V. (2021). Study of sustainable concrete property containing waste foundry sand. Materials Today: Proceedings, 39, 855–860. https://doi.org/10.1016/j.matpr.2020.10.359
Article
Google Scholar
Khaloo, A. R., Dehestani, M., & Rahmatabadi, P. (2008). Mechanical properties of concrete containing a high volume of tire-rubber particles. Waste Management, 28(12), 2472–2482. https://doi.org/10.1016/j.wasman.2008.01.015
Article
Google Scholar
Kumar, N. V. S., & Ram, K. S. S. (2018). Experimental study on properties of concrete containing crushed rock dust as a partial replacement of cement. Materials Today: Proceedings, 5(2), 7240–7246.
Google Scholar
Kurama, H., & Kaya, M. (2008). Usage of coal combustion bottom ash in concrete mixture. Construction and Building Materials, 22(9), 1922–1928. https://doi.org/10.1016/j.conbuildmat.2007.07.008
Article
Google Scholar
Lee, G., Ling, T. C., Wong, Y. L., & Poon, C. S. (2011). Effects of crushed glass cullet sizes, casting methods and pozzolanic materials on ASR of concrete blocks. Construction and Building Materials, 25(5), 2611–2618. https://doi.org/10.1016/j.conbuildmat.2010.12.008
Article
Google Scholar
Li, G. Q., Stubblefield, M. A., Garrick, G., Eggers, J., Abadie, C., & Huang, B. S. (2004). Development of waste tire modified concrete. Cement and Concrete Research, 34(12), 2283–2289. https://doi.org/10.1016/j.cemconres.2004.04.013
Article
Google Scholar
Liew, K. M., Sojobi, A. O., & Zhang, L. W. (2017). Green concrete: Prospects and challenges. Construction and Building Materials, 156, 1063–1095. https://doi.org/10.1016/j.conbuildmat.2017.09.008
Article
Google Scholar
Ling, T. C., Poon, C. S., & Wong, H. W. (2013). Management and recycling of waste glass in concrete products: Current situations in Hong Kong. Resources Conservation and Recycling, 70, 25–31. https://doi.org/10.1016/j.resconrec.2012.10.006
Article
Google Scholar
Liu, Q., Lu, Z. Y., Liang, X. X., Liang, R., Li, Z. J., & Sun, G. X. (2021). High flexural strength and durability of concrete reinforced by in situ polymerization of acrylic acid and 1-acrylamido-2-methylpropanesulfonic acid. Construction and Building Materials, 292, 123428. https://doi.org/10.1016/j.conbuildmat.2021.123428
Article
Google Scholar
Lotfy, A., Karahan, O., Ozbay, E., Hossain, K. M. A., & Lachemi, M. (2015). Effect of kaolin waste content on the properties of normal-weight concretes. Construction and Building Materials, 83, 102–107. https://doi.org/10.1016/j.conbuildmat.2015.03.002
Article
Google Scholar
Maharishi, A., Singh, S. P., Gupta, L. K., & Shehnazdeep. (2021). Strength and durability studies on slag cement concrete made with copper slag as fine aggregates. Materials Today: Proceedings, 38, 2639–2648. https://doi.org/10.1016/j.matpr.2020.08.232
Article
Google Scholar
Majhi, R. K., Nayak, A. N., & Mukharjee, B. B. (2018). Development of sustainable concrete using recycled coarse aggregate and ground granulated blast furnace slag. Construction and Building Materials, 159, 417–430. https://doi.org/10.1016/j.conbuildmat.2017.10.118
Article
Google Scholar
Manjunatha, M., Reshma, T., Balaji, K., Bharath, A., & Tangadagi, R. B. (2021). The sustainable use of waste copper slag in concrete: An experimental research. Materials Today: Proceedings, 47, 3645–3653.
Google Scholar
Mater, Y., Kamel, M., Karam, A., & Bakhoum, E. (2022). ANN-Python prediction model for the compressive strength of green concrete. Construction Innovation. https://doi.org/10.1108/CI-08-2021-0145
Article
Google Scholar
Meisuh, B. K., Kankam, C. K., & Buabin, T. K. (2018). Effect of quarry rock dust on the flexural strength of concrete. Case Studies in Construction Materials, 8, 16–22. https://doi.org/10.1016/j.cscm.2017.12.002
Article
Google Scholar
Müller, H. S., Breiner, R., Moffatt, J. S., & Haist, M. (2014). Design and properties of sustainable concrete. Procedia Engineering, 95, 290–304.
Article
Google Scholar
Munir, M. J., Kazmi, S. M. S., & Wu, Y. F. (2017). Efficiency of waste marble powder in controlling alkali-silica reaction of concrete: A sustainable approach. Construction and Building Materials, 154, 590–599. https://doi.org/10.1016/j.conbuildmat.2017.08.002
Article
Google Scholar
Nakic, D. (2018). Environmental evaluation of concrete with sewage sludge ash based on LCA. Sustainable Production and Consumption, 16, 193–201. https://doi.org/10.1016/j.spc.2018.08.003
Article
Google Scholar
Naser, A. H., Badr, A. H., Henedy, S. N., Ostrowski, K. A., & Imran, H. (2022). Application of multivariate adaptive regression splines (MARS) approach in prediction of compressive strength of eco-friendly concrete. Case Studies in Construction Materials, 17, e01262.
Article
Google Scholar
Nasier, S. (2021). Utilization of recycled form of concrete, E-wastes, glass, quarry rock dust and waste marble powder as reliable construction materials. Materials Today: Proceedings, 45, 3231–3234. https://doi.org/10.1016/j.matpr.2020.12.381
Article
Google Scholar
Nisbet, M. A., VanGeem, M. G., Gajda, J., & Marceau, M. (2000). Environmental life cycle inventory of portland cement concrete. PCA R&D Serial, 28.
NTC, L. G. (2008). Norme tecniche per le costruzioni. Gazzetta Ufficiale della Repubblica Italiana, 29(30).
Oke, A. E., Aigbavboa, C. O., & Semenya, K. (2017). Energy savings and sustainable construction: Examining the advantages of nanotechnology. Proceedings of the 9th International Conference on Applied Energy, 142, 3839–3843. https://doi.org/10.1016/j.egypro.2017.12.285
Palankar, N., Shankar, A. R., & Mithun, B. (2015). Studies on eco-friendly concrete incorporating industrial waste as aggregates. International Journal of Sustainable Built Environment, 4(2), 378–390.
Article
Google Scholar
Panizza, M., Natali, M., Garbin, E., Tamburini, S., & Secco, M. (2018). Assessment of geopolymers with construction and demolition waste (CDW) aggregates as a building material. Construction and Building Materials, 181, 119–133. https://doi.org/10.1016/j.conbuildmat.2018.06.018
Article
Google Scholar
Pelisser, F., Zavarise, N., Longo, T. A., & Bernardin, A. M. (2011). Concrete made with recycled tire rubber: Effect of alkaline activation and silica fume addition. Journal of Cleaner Production, 19(6–7), 757–763. https://doi.org/10.1016/j.jclepro.2010.11.014
Article
Google Scholar
Pliya, P., Hajiloo, H., Romagnosi, S., Cree, D., Sarhat, S., & Green, M. F. (2021). The compressive behaviour of natural and recycled aggregate concrete during and after exposure to elevated temperatures. Journal of Building Engineering, 38, 102214. https://doi.org/10.1016/j.jobe.2021.102214
Article
Google Scholar
Ponnada, S., Cheela, V. S., & Raju, S. G. (2020). Investigation on mechanical properties of composite concrete containing untreated sea sand and quarry dust for 100% replacement of fine aggregate. Materials Today: Proceedings, 32, 989–996.
Google Scholar
Prem, P. R., Verma, M., & Ambily, P. S. (2018). Sustainable cleaner production of concrete with high volume copper slag. Journal of Cleaner Production, 193, 43–58. https://doi.org/10.1016/j.jclepro.2018.04.245
Article
Google Scholar
Prusty, J. K., Patro, S. K., & Basarkar, S. (2016). Concrete using agro-waste as fine aggregate for sustainable built environment—A review. International Journal of Sustainable Built Environment, 5(2), 312–333.
Article
Google Scholar
Rajan, R. G., Sakthieswaran, N., & Babu, O. G. (2021). Experimental investigation of sustainable concrete by partial replacement of fine aggregate with treated waste tyre rubber by acidic nature. Materials Today: Proceedings, 37, 1019–1022. https://doi.org/10.1016/j.matpr.2020.06.279
Article
Google Scholar
Rana, A., Kalla, P., Verma, H. K., & Mohnot, J. K. (2016). Recycling of dimensional stone waste in concrete: A review. Journal of Cleaner Production, 135, 312–331. https://doi.org/10.1016/j.jclepro.2016.06.126
Article
Google Scholar
Rao, B. K., Reddy, M. A. K., & Rao, A. V. (2022). Effect of flyash as cement replacement material and pore filling material in concrete. Materials Today: Proceedings, 52, 1775–1780.
Google Scholar
Ray, S., Haque, M., Ahmed, T., Mita, A. F., Saikat, M. H., & Alom, M. M. (2022). Predicting the strength of concrete made with stone dust and nylon fiber using artificial neural network. Heliyon, 8(3), e09129.
Article
Google Scholar
Rollakanti, C. R., Prasad, C. V. S. R., Poloju, K. K., Al Muharbi, N. M. J., & Arun, Y. V. (2021). An experimental investigation on mechanical properties of concrete by partial replacement of cement with wood ash and fine sea shell powder. Materials Today: Proceedings, 43, 1325–1330. https://doi.org/10.1016/j.matpr.2020.09.164
Article
Google Scholar
Saloni, P., Lim, Y. Y., Pham, T. M., Jatin, & Kumar, J. (2021). Sustainable alkali activated concrete with fly ash and waste marble aggregates: Strength and durability studies. Construction and Building Materials, 283, 122795. https://doi.org/10.1016/j.conbuildmat.2021.122795
Article
Google Scholar
Satyaprakash, Helmand, P., & Saini, S. (2019). Mechanical properties of concrete in presence of Iron filings as complete replacement of fine aggregates. Materials Today: Proceedings, 15, 536–545. https://doi.org/10.1016/j.matpr.2019.04.118
Article
Google Scholar
Senaratne, S., Lambrousis, G., Mirza, O., Tam, V. W. Y., & Kang, W. H. (2017). Recycled concrete in structural applications for sustainable construction practices in Australia. International High-Performance Built Environment Conference—A Sustainable Built Environment Conference 2016 Series (Sbe16), Ihbe 2016, 180, 751–758. https://doi.org/10.1016/j.proeng.2017.04.235
Shafigh, P., Nomeli, M. A., Alengaram, U. J., Bin Mahmud, H., & Jumaat, M. Z. (2016). Engineering properties of lightweight aggregate concrete containing limestone powder and high volume fly ash. Journal of Cleaner Production, 135, 148–157. https://doi.org/10.1016/j.jclepro.2016.06.082
Article
Google Scholar
Shahidan, S., Azmi, M. A. M., Kupusamy, K., Zuki, S. S. M., & Ali, N. (2017). Utilizing construction and demolition (C&D) waste as recycled aggregates (RA) in concrete. Procedia Engineering, 174, 1028–1035.
Article
Google Scholar
Shewalul, Y. W. (2021). Experimental study of the effect of waste steel scrap as reinforcing material on the mechanical properties of concrete. Case Studies in Construction Materials, 14, e00490. https://doi.org/10.1016/j.cscm.2021.e00490
Article
Google Scholar
Siddique, R. (2012). Utilization of wood ash in concrete manufacturing. Resources Conservation and Recycling, 67, 27–33. https://doi.org/10.1016/j.resconrec.2012.07.004
Article
Google Scholar
Siddique, R. (2014). Utilization of industrial by-products in concrete. 2nd International Conference on Sustainable Civil Engineering Structures and Construction Materials, 95, 335–347. https://doi.org/10.1016/j.proeng.2014.12.192
Siddique, R., & Naik, T. R. (2004). Properties of concrete containing scrap-tire rubber—An overview. Waste Management, 24(6), 563–569. https://doi.org/10.1016/j.wasman.2004.01.006
Article
Google Scholar
Siddique, R., Singh, G., & Singh, M. (2018). Recycle option for metallurgical by-product (spent foundry sand) in green concrete for sustainable construction. Journal of Cleaner Production, 172, 1111–1120. https://doi.org/10.1016/j.jclepro.2017.10.255
Article
Google Scholar
Suchorski, & David, M. (2007). Aggregates for concrete, ACI education bulletin E1-07, ACI committee E-701, materials for concrete construction. August.
Teixeira, E. R., Mateus, R., Camoes, A. F., Braganca, L., & Branco, F. G. (2016). Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. Journal of Cleaner Production, 112, 2221–2230. https://doi.org/10.1016/j.jclepro.2015.09.124
Article
Google Scholar
Thomas, B. S., Kumar, S., & Arel, H. S. (2017). Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material—A review. Renewable & Sustainable Energy Reviews, 80, 550–561. https://doi.org/10.1016/j.rser.2017.05.128
Article
Google Scholar
Turatsinze, A., Bonnet, S., & Granju, J. L. (2007). Potential of rubber aggregates to modify properties of cement based-mortars: Improvement in cracking shrinkage resistance. Construction and Building Materials, 21(1), 176–181. https://doi.org/10.1016/j.conbuildmat.2005.06.036
Article
Google Scholar
Ulubeyli, G. C., Bilir, T., & Artir, R. (2016). Durability properties of concrete produced by marble waste as aggregate or mineral additives. World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium 2016, WMCAUS 2016, 161, 543–548. https://doi.org/10.1016/j.proeng.2016.08.689
Waghmare, S., Katdare, A., & Patil, N. (2022). Studies on application of multiple regression analysis for prediction of split tensile strength of concrete with zeolite. Materials Today: Proceedings, 59, 1148–1154.
Google Scholar
Wang, G. C. (2016). The utilization of slag in civil infrastructure construction. Woodhead Publishing.
Book
Google Scholar
Wu, Z. X., Jiang, Y. M., Guo, W. X., Jin, J. X., Wu, M. J., Shen, D. S., & Long, Y. Y. (2021). The long-term performance of concrete amended with municipal sewage sludge incineration ash. Environmental Technology & Innovation, 23, 101574. https://doi.org/10.1016/j.eti.2021.101574
Article
Google Scholar
Yang, J. (2005). Introduction—Bridging the gaps in smart and sustainable built environments. In J. Yang, P. S. Brandon, & A. C. Sidwell (Eds.), Smart & sustainable built environments. Blackwell Publishing Ltd.
Chapter
Google Scholar
Zhu, Y. F., Zahedi, A., Sanchez, L. F. M., Fournier, B., & Beauchemin, S. (2021). Overall assessment of alkali-silica reaction affected recycled concrete aggregate mixtures derived from construction and demolition waste. Cement and Concrete Research, 142, 106350. https://doi.org/10.1016/j.cemconres.2020.106350
Article
Google Scholar