Al-Salloum, Y. A. (2007). Compressive strength models of FRP-confined concrete. In: S.T. Smith (Ed.), Proceedings of the Asia-Pacific conference of FRP in structures (APFIS 2007), Hong Kong: Univerisity of Hong Kong, 2007, pp. 175–180.
Bazli, M., Ashrafi, H., & Oskouei, A. V. (2016). Effect of harsh environments on mechanical properties of GFRP pultruded profiles. Composites Part B Engineering, 99, 203–215.
Article
Google Scholar
Benzaid, R., Mesbah, H., & Chikh, N. E. (2010). FRP-confined concrete cylinders: Axial compression experiments and strength model. Journal of Reinforced Plastics and Composites, 29(16), 2469–2488.
Article
Google Scholar
Bisby, L. A., Dent, A. J., & Green, M. F. (2005). (2005) Comparison of confinement models for fiber-reinforced polymer-wrapped concrete. ACI Structural Journal, 102(1), 62–72.
Google Scholar
Chao, S. H., Naaman, A. E., & Parra-Montesinos, G. J. (2009). Bond behavior of reinforcing bars in tensile strain-hardening fiber reinforced cement composites. ACI Structural Journal., 106, 897–906.
Google Scholar
Christian, S. J., & Billington, S. L. (2011). Mechanical response of PHB- and cellulose acetate natural fiber-reinforced composites for construction applications. Composites Part B Engineering, 42(7), 1920–1928.
Article
Google Scholar
Cromwell, J. R., Harries, K. A., & Shahrooz, B. M. (2011). Environmental durability of externally bonded FRP materials intended for repair of concrete structures. Construction and Building Materials, 25, 2528–2539.
Article
Google Scholar
Feng, J. H., Su, Y. L., & Qian, C. X. (2019). Coupled effect of PP fiber, PVA fiber and bacteria on self-healing efficiency of early-age cracks in concrete. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2019.116810
Article
Google Scholar
Feng, P., Wang, J., Wang, Y., Loughery, D., & Niu, D. (2014). Effects of corrosive environments on properties of pultruded GFRP plates. Composites Part B Engineering, 67, 427–433.
Article
Google Scholar
Ganesan, N., Indira, P. V., & Sabeena, M. V. (2014). Bond stress slip response of bars embedded in hybrid fiber reinforced high performance concrete. Construction and Building Materials, 50, 108–115. https://doi.org/10.1016/j.conbuildmat.2013.09.032
Article
Google Scholar
Ghernouti, Y., & Rabehi, B. (2011). FRP-confined short concrete columns under compressive loading: Experimental and modeling investigation. Journal of Reinforced Plastics and Composites, 30(3), 241–255.
Article
Google Scholar
Guo, Y. H., Hu, X. Y., & Lv, J. F. (2019). Experimental study on the resistance of basalt fiber reinforced concrete to chloride penetration. Construction and Building Materials, 223, 142–155. https://doi.org/10.1016/j.conbuildmat.2019.06.211
Article
Google Scholar
Kasagani, H., & Rao, C. B. K. (2018). Effect of graded fibers on stress strain behaviour of Glass Fiber Reinforced Concrete in tension. Construction and Building Materials, 183, 592–604. https://doi.org/10.1016/j.conbuildmat.2018.06.193
Article
Google Scholar
Kizilkanat, A. B., Kabay, N., Akyüncü, V., Chowdhury, S., & Akça, A. H. (2015). Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Construction and Building Materials, 100, 218–224.
Article
Google Scholar
Lam, L., & Teng, J. G. (2003). Design-oriented stress–strain model for FRP-confined concrete. Construction and Building Materials, 17, 471–489.
Article
Google Scholar
Li, Y. L., Zhao, X. L., Raman Singh, R. K., & Al-Saadi, S. (2016). Experimental study on seawater and sea sand concrete filled GFRP and stainless steel tubular stub columns. Thin-Walled Structures, 106, 390–406.
Article
Google Scholar
Liu, F. Y., Ding, W. Q., & Qiao, Y. F. (2020). Experimental investigation on the tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag powder. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2020.118000
Article
Google Scholar
Meda, A., Mostosi, S., Rinaldi, Z., & Riva, P. (2016). Corroded RC columns repair and strengthening with high-performance fiber-reinforced concrete jacket. Materials and Structures, 49, 1967–1978.
Article
Google Scholar
Mirmiran, A., & Shahawy, M. (1997). Dilation characteristics of confined concrete. Mech Cohesive-Frict Mater, 2(3), 237–249.
Article
Google Scholar
Mohammadhosseini, H., Tahir, M. M., Alaskar, A., Alabduljabbar, H., & Alyousef, R. (2020). Enhancement of strength and transport properties of a novel preplaced aggregate fiber reinforced concrete by adding waste polypropylene carpet fibers. J Build Eng. https://doi.org/10.1016/j.jobe.2019.101003
Article
Google Scholar
Niu, D. T., Su, L., Luo, Y., Huang, D. G., & Luo, D. M. (2020). Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2019.117628
Article
Google Scholar
Shaikh Ahmed, F. U. (2013). Review of mechanical properties of short fiber reinforced geopolymer composites. Construction and Building Materials, 43, 37–49.
Article
Google Scholar
Signorini, C., Sola, A., Malchiodi, B., Nobili, A., & Gatto, A. (2020). Failure mechanism of silica coated polypropylene fibers for Fiber Reinforced Concrete (FRC). Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2019.117549
Article
Google Scholar
Spoelstra, M. R., & Monti, G. (1999). FRP-confined concrete model. Journal of Composites for Construction, 3(3), 143–150.
Article
Google Scholar
Standards and literature references for composite materials—D638 (1990). 2nd Ed., ASTM, West Conshohocken, PA.
Sun, X. J., Gao, Z., Cao, P., & Zhou, C. J. (2019). Mechanical properties tests and multiscale numerical simulations for basalt fiber reinforced concrete. Construction and Building Materials, 202, 58–72. https://doi.org/10.1016/j.conbuildmat.2019.01.018
Article
Google Scholar
Tahsiri, H., Sedehi, O., Khaloo, A., & Raisi, E. M. (2015). Experimental study of RC jacketed and CFRP strengthened RC beams. Construction and Building Materials, 95, 476–485.
Article
Google Scholar
Teng, J., Huang, Y. L., Lam, L., & Ye, L. P. (2007). Theoretical model for fiber-reinforced polymer-confined concrete. Journal of Composites for Construction, 11(2), 201–210.
Article
Google Scholar
Wang, X. H., Zhang, S. R., Wang, C., Cao, K. L., Wei, P. Y., & Wang, J. X. (2019). Effect of steel fibers on the compressive and splitting-tensile behaviours of cellular concrete with millimeter-size pores. Construction and Building Materials., 221, 60–73. https://doi.org/10.1016/j.conbuildmat.2019.06.069
Article
Google Scholar
Xie, J. H., Fang, C., Lu, Z. Y., Li, Z. J., & Li, L. J. (2019). Effects of the addition of silica fume and rubber particles on the compressive behaviour of recycled aggregate concrete with steel fibers. Journal of Cleaner Production, 197, 656–667. https://doi.org/10.1016/j.jclepro.2018.06.237
Article
Google Scholar
Zheng, D., Song, W. D., Fu, J. X., Xue, G. L., Li, J. J., & Cao, S. A. (2020). Research on mechanical characteristics, fractal dimension and internal structure of fiber reinforced concrete under uniaxial compression. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2020.120351
Article
Google Scholar
Zhu, D. J., Liu, S., Yao, Y. M., Li, G. S., Du, Y. X., & Shi, C. J. (2019). Effects of short fiber and pretension on the tensile behavior of basalt textile reinforced concrete. Cement and Concrete Composites, 96, 33–45. https://doi.org/10.1016/j.cemconcomp.2018.11.015
Article
Google Scholar